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Disco Language Reference

The Disco Language Reference consists of a number of short,
interlinked pages, each centered on a single topic.  This is not a
typical “language reference”, which would be intended for language
implementers and organized according to syntax, type system,
semantics, and so on.  Neither is it a comprehensive tutorial meant to
be read from start to finish.  Rather, it is intended to be a
reference for students who are just learning the language.  Error
messages and other documentation may link here, giving students the
opportunity to learn about specific topics just when it is relevant to
them.



	Arithmetic
	Addition

	Multiplication

	Subtraction

	Division

	Integer division

	Modulo

	Divisibility testing

	Exponentiation

	Rounding

	Absolute value

	Combinatorics
	Factorial

	Binomial and multinomial coefficients
	Multinomial coefficients













	Comparison

	Logical operations

	Syntax
	Variables

	Type signature

	Expressions

	Definitions
	Definition vs assignment





	Definition versus equality testing

	Operators
	Twiddle notation

	Operator documentation





	Operator precedence and associativity

	Case expressions
	Basic case expressions with conditions

	Case expressions with conditions and patterns





	Comments

	Documentation





	Types
	Base types
	Booleans

	Numeric types
	Natural numbers

	Integers

	Fractional numbers

	Rational numbers





	Characters





	Function types

	Polymorphism

	Algebraic types
	Unit type

	Pair types
	n-tuples and nested pairs





	Sum types





	Collection types
	Sets





	Propositions

	Subtypes

	Subtyping for algebraic types





	Functions
	Function types

	Pattern matching
	Literal pattern

	Variable pattern

	Wildcard patterns

	Arithmetic patterns

	Tuple patterns





	Anonymous functions

	Higher-order functions





	Collections
	Size

	Cartesian product

	Ellipsis

	Set operations

	Power set

	Comprehensions
	Examples

	Details

	Specification









	Combinatorics
	Factorial

	Binomial and multinomial coefficients
	Multinomial coefficients









	Error messages
	There is nothing named x

	The name x is ambiguous

	The definition of x must have an accompanying type signature

	The expression e must have both a blah type and also…

	Empty case expressions are not allowed

	Value did not match any of the branches in a case expression

	Pattern p contains duplicate variable x

	The pattern p is supposed to have type T, but instead…

	Duplicate type signature for x

	Duplicate definition for x

	Duplicate definition for type T

	Cyclic type definition for T

	Number of arguments does not match

	The type T is not searchable

	There is no built-in or user-defined type named X

	Wildcards are not allowed in expressions

	Not enough/too many arguments for the type T

	Unknown type variable

	Recursive occurrences of T may only have type variables as arguments

	The shape of two types does not match

	Typechecking failed

	Values of type T cannot be…

	Type variable x represents any type, so we cannot assume…





	Symbols








          

      

      

    

  

    
      
          
            
  
Arithmetic

Disco can do many of the usual operations on numbers.  For more on the
types of numbers Disco supports, see Numeric types.



	Addition

	Multiplication

	Subtraction

	Division

	Integer division

	Modulo

	Divisibility testing

	Exponentiation

	Rounding

	Absolute value

	Combinatorics
	Factorial

	Binomial and multinomial coefficients
	Multinomial coefficients
















          

      

      

    

  

    
      
          
            
  
Addition


Note

This page concerns the + operator on numbers; for the +
operator on types, see sum types; for
the + operator on graphs, see overlay.


  
    

    Multiplication
    

    
 
  

    
      
          
            
  
Multiplication


Note

This page concerns the * operator on numbers; for the *
operator on types, see pair types; for the * operator on graphs, see
connect.


  
    

    Subtraction
    

    
 
  

    
      
          
            
  
Subtraction

Integers and rational numbers
can be subtracted using the - operator.  For example:

Disco> 1 - 5
-4
Disco> 2/3 - 1/2
1/6





It is not possible to subtract natural numbers or
fractional numbers since those numeric types have no concept of negative numbers; however, in many
situations, if you subtract natural or fractional numbers they will
be automatically converted to integers or rationals as appropriate.

In some situations, you really do need to subtract natural or fractional
numbers. For example, consider this incorrect definition of the
factorial function:

fact_bad : N -> N
fact_bad(0) = 1
fact_bad(n) = n * fact_bad(n-1)





This definition will yield an error, because subtracting two natural
numbers is not allowed: in particular, n is a natural number and
we are attempting to perform the subtraction n-1.  One solution is
to use the special “dot minus” operator .- (also written ∸),
which simply stops at zero instead of yielding negative numbers:

Disco> 5 .- 3
2
Disco> 5 .- 4
1
Disco> 5 .- 5
0
Disco> 5 .- 6
0
Disco> 5 .- 7
0





Using dot minus, we can write a correct definition of factorial as
follows:

fact : N -> N
fact(0) = 1
fact(n) = n * fact(n .- 1)





(Alternatively, we could define fact using an arithmetic
pattern; see that page for more info.)
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Division

Fractional and rational numbers
can be divided using the / operator.  For example:

Disco> 1 / 5
1/5
Disco> (2/3) / (7/5)
10/21





It is not possible to divide natural numbers or
integers since those numeric types have no concept of fractions; however, in many
situations, if you divide natural numbers or integers they will
be automatically converted to fractionals or rationals as appropriate:

Disco> :type 1 * (-2)
1 * (-2) : ℤ
Disco> :type 1 / (-2)
1 / (-2) : ℚ





Some related operations:


	If you want only the quotient when dividing (i.e. the integer
number of times one thing fits into another, disregarding any
remainder), you can use integer division.


	If you want the remainder instead, you can use the mod operator.


	If you just want to test whether one number evenly divides another,
you should use the divides operator.
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Integer division

The integer division or quotient of two numbers, written //,
is the result of the division rounded down to the nearest integer.
Intuitively, you can think of it as the number of times that one thing
fits into another, disregarding any remainder.  For
example, 11 // 2 is 5, because 2 fits into 11 five
times (with some left over).

Disco> 11 // 2
5
Disco> 6 // 2
3
Disco> 6 // 7
0
Disco> (-7) // 2
-4





In fact, // is simply defined in terms of regular division along with the floor operation:

x // y = floor (x / y)





Although dividing two integers using the usual /
operator does not necessarily result in an integer, using integer
division does.  In particular, the integer division operator can be given the types

~//~ : ℕ × ℕ → ℕ
~//~ : ℤ × ℤ → ℤ





Formally, the result of // is defined in terms of the “Division
Algorithm”: given a number \(n\) and a divisor \(d\), the
quotient n // d is the unique number \(q\) such that \(n
= qd + r\), where \(0 \leq r < d\).
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Modulo

The mod operator is used to give the remainder when one number
is divided by another.

For example, 11 mod 2 is 1, because 2 fits into 11 five
times, with a remainder of 1; 11 mod 4 is 3, because dividing
11 by 4 leaves a remainder of 3.

Disco> 11 mod 2
1
Disco> 11 mod 4
3
Disco> 6 mod 2
0
Disco> 6 mod 7
6
Disco> (-7) mod 2
1





Formally, the result of mod is defined in terms of the “Division
Algorithm”: given a number \(n\) and a positive divisor \(d\), the
remainder n mod d is the unique number \(r\) such that \(n
= qd + r\), where \(0 \leq r < d\) and \(q\) is the
quotient.  (For negative divisors, we
instead require \(d < r \leq 0\).)
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Divisibility testing

We can test whether one number evenly divides another using the
divides operator.  In particular, a divides b is true if there
exists an integer k such that b == k*a.  For
example:

Disco> 3 divides 6
true
Disco> 6 divides 3
false
Disco> 3 divides (-6)
true
Disco> 5 divides 5
true
Disco> 4 divides 6
false
Disco> 0 divides 10
false
Disco> 10 divides 0
true
Disco> 0 divides 0
true
Disco> 1/2 divides 3/2
true
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Exponentiation

The ^ operator is used to raise one number to the power of
another.

Disco> 2 ^ 5
32
Disco> 2 ^ 0
1
Disco> 2 ^ (-5)
1/32
Disco> (-3) ^ (-5)
-1/243





If the exponent is a natural number, the result will
have the same type as the base.  If the exponent is an integer, the result will be fractional or
rational, depending on the type of the base.

Fractional exponents may not be used, as the result could be
irrational, and Disco has no way to represent irrational numbers.  For
example, \(2^{1/2} = \sqrt{2}\).
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Rounding

Sometimes, when we have a fractional or
rational number, we want to get rid of the
fractional part and turn it into an integer or
natural number.  This can be done with the floor
and ceiling operators.


	floor x, also written ⌊ x ⌋, returns the largest integer
which is less than or equal to x.  For example:


Disco> floor(1/2)
0
Disco> floor(7/2)
3
Disco> floor(3)
3
Disco> floor(-1/2)
-1






Note

That floor always rounds down, even for negative
numbers. This is how mathematicians think about floor, and
is the most mathematically elegant definition; however, note
that in some other programming languages, floor always
rounds towards zero instead, so e.g. floor(-1/2) would
be 0.
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Absolute value

The absolute value function applied to a number x can be written
either abs(x) or using the traditional notation |x|.

Disco> abs(6)
6
Disco> abs(-6)
6
Disco> abs(-1/2)
1/2
Disco> |-6|
6





Since the output of abs is always positive, it can convert
rational numbers into fractional numbers,
and integers into natural numbers.

The notation |~| can also be used to find the size
of a collection such as a set, bag, or
list.
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Combinatorics

Disco has a growing collection of operations relating to
combinatorics, i.e. counting things.



	Factorial

	Binomial and multinomial coefficients
	Multinomial coefficients
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Factorial

Factorial, written !, is a unary operator
written after its argument, defined as the product of all the natural
numbers from 1 up to \(n\), that is, \(n! = 1 \times 2
\times 3 \times \dots \times n\).

Disco> :doc !
~! : ℕ → ℕ

n! computes the factorial of n, that is, 1 * 2 * ... * n.

https://disco-lang.readthedocs.io/en/latest/reference/factorial.html

Disco> 3!
6
Disco> 4!
24
Disco> 4! == 1 * 2 * 3 * 4
true
Disco> (4!)!
620448401733239439360000
Disco> ((4!)!)!
Error: that number would not even fit in the universe!
Disco> 0!
1





Note that \(0! = 1\) by definition, since a product of zero things
should be the identity value for multiplication.
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Binomial and multinomial coefficients

The binomial coefficient \(\binom n k\) represents the number of
different ways to choose a subset of size \(k\)  out of a set of
size \(n\), and is in general given by the formula

\(\displaystyle \binom n k = \frac{n!}{k!(n-k)!}\)

However, binomial coefficients can be computed more efficiently than
literally using the above formula with factorial,
so Disco has special built-in support for computing them.  Since
\(\binom n k\) is usually pronounced “\(n\) choose \(k\)”,
the Disco syntax is n choose k.  For example:

Disco> 5 choose 2
10
Disco> 7 choose 0
1
Disco> 0 choose 0
1
Disco> 7 choose 8
0
Disco> 100 choose 23
24865270306254660391200






Multinomial coefficients

Disco also has support for multinomial coefficients:

\(\displaystyle \binom{n}{k_1 \quad k_2 \quad \dots \quad k_r} = \frac{n!}{k_1! k_2! \dots k_r! (n - k_1 - k_2 - \dots - k_r)!}\)

is the number of ways to simultaneously choose subsets of size \(k_1,
k_2, \dots, k_r\) out of a set of size \(n\).  In Disco, a multinomial
coefficient results when the second argument to choose is a list
instead of a natural number.  For example:

Disco> 10 choose 2
45
Disco> 10 choose [2]
45
Disco> 10 choose [2,3]
2520
Disco> 10 choose [2,3,5]
2520
Disco> 10 choose [2,3,5] == (10 choose 2) * (8 choose 3) * (5 choose 5)
true
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Comparison

Comparison operators can be used to compare two values, to test if
they are equal or to see what order they are in.  Comparison operators
always return a boolean value.

Values of almost any type can be compared: numeric types, booleans, characters,
strings, and any pair,
sum, or container types built out
of these.  For example, sets of pairs of natural numbers and strings
can be compared:

Disco> {(3, "hi"), (4, "there"), (6, "world")} < {(10, "what")}
true





See the individual pages about each type for more information on how
comparison works on values of that type.

Functions, on the other hand, cannot be
compared, because in general this would require testing the functions
on every single possible input, of which there might be infinitely
many.

Disco> (\n:N. n) < (\n:N. n+1)
Error: values of type a2 → a3 cannot be compared.
https://disco-lang.readthedocs.io/en/latest/reference/not-qual.html






	The == operator is for testing equality.  For example,


Disco> 3 == 5
false
Disco> "hi" == "hi"
true








Equality is one critical point where Disco syntax has to deviate
from standard mathematical notation: be sure to keep in mind the
difference between = (which is used to define things) and ==, used for testing whether two things are
equal.  For more information on the difference, see the page on
definition vs equality testing.



	The /= operator (also written ≠ or !=) means “not equal
to”.  It is true if and only if its two arguments are not equal. The
syntax /= is supposed to remind us of the standard mathematical
notation of an equality sign with a slash through it (≠).
However, != is also provided for those used to this operator in
other programming languages.


	There are four operators that can be used to test the ordering of
two values:



	< tests whether the first value is less than the second.


	> tests whether the first value is greater than the second.


	<=, also written ≤ or =<, tests whether the first
value is less than or equal to the second.


	>=, also written ≥ or =>, tests whether the first
value is greater than or equal to the second.









	You can chain multiple comparisons; this always means the same thing
as combining all the individual comparisons with “and”.  For
example, 3 <= x < y <= 10 means the same thing as 3 <= x /\ x
< y /\ y <= 10.
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Logical operations

Disco has various standard operations for manipulating Boolean
values.


	Logical negation is written not; it inverts true to
false and vice versa.


	Logical conjunction, aka AND, is written /\, and, or
&&.  It has the following truth table:




	x

	y

	x /\ y





	F

	F

	F



	F

	T

	F



	T

	F

	F



	T

	T

	T











	Logical disjunction, aka OR, is written \/, or, or
||. It has the following truth table:




	x

	y

	x \/ y





	F

	F

	F



	F

	T

	T



	T

	F

	T



	T

	T

	T











	Logical implication, aka IF-THEN, is written ->, ==>, or
implies. It has the following truth table:




	x

	y

	x -> y





	F

	F

	T



	F

	T

	T



	T

	F

	F



	T

	T

	T











	Biconditional, aka “if and only if”, is written <->, <==>, or
iff. It has the following truth table:




	x

	y

	x <-> y





	F

	F

	T



	F

	T

	F



	T

	F

	F



	T

	T

	T
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Syntax

Syntax refers to the rules for writing a language. For example, the
syntax of the English language includes things like spelling and
grammar.  The syntax of Disco programs likewise refers to “spelling and
grammar”, that is, the various ways to write valid Disco programs.



	Variables

	Type signature

	Expressions

	Definitions
	Definition vs assignment





	Definition versus equality testing

	Operators
	Twiddle notation

	Operator documentation





	Operator precedence and associativity

	Case expressions
	Basic case expressions with conditions

	Case expressions with conditions and patterns





	Comments

	Documentation
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Variables

A variable is a name given to some value.  Variable names can
contain lowercase and uppercase letters, digits, underscores (_)
and apostrophes, with the only restriction that a name must start with
a letter.  For example, myHorse3, some_name, and X__17'x'_
are all valid variable names.

To define a variable, one must first use a type signature to declare its type on a line by itself, like

variable_name : type





where type is replaced by whatever type the variable should have.
The value of the variable can then be defined
using an = sign, like

variable_name = expr





where expr represents an arbitrary expression.  (There is
also special syntax available for defining functions.)  For example:

my_variable : Z
my_variable = 2 * 7 + 9





The above code defines the variable my_variable with the type
Z (i.e. an integer) and the value 23.
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Type signature

A type signature declares what type a variable has.  It consists of a variable name, a colon, and a type
on one line together.  For example,

x : Z





is a type signature declaring the variable x to have type Z.

Every definition must have a type
signature that comes before it.
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Expressions

An expression is some combination of values, operators, and
functions which describes a value (turning an expression into a
value is called evaluation).

Examples of expressions in Disco include:


	5 (a single number, string,
boolean, variable, etc. by itself is
an expression)


	1 + 2 (two or more expressions combined by operators is again an expression)


	f(x,3) * g(2) (function calls are expressions)




Examples of things which are not expressions include:


	x : N (this is a type signature, not an expression; it does not
have a value, it says what the type of x is)


	x = 3 (this is a definition)





Warning

Be careful not to confuse x = 3 (a definition
of the variable x) with x == 3 (a
comparison expression which has a value of either
true or false depending on whether x is equal to 3 or
not).  See Definition versus equality testing.
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Definitions

We can define a variable to have a certain value
using the syntax

variable = expression





Note that every definition also must have a type signature before it.  So, for example,

x : Z
x = -17





declares the variable x to have the type Z and to represent
the value -17.  From now on, whenever we use x, it can be
thought of as an abbreviation for the number -17.

Note that the equals sign in Disco really means mathematical
equality, like an equation in algebra, and that a variable can
have only one definition.  If you are already familiar with
an imperative language like Python or Java, read the next section for
a comparison with Disco.  If Disco is your first programming language,
you can skip this (though you may read it if you are interested).


Definition vs assignment

In many imperative languages, variables can be thought of as “boxes”
that store values, and the equals sign means assignment.  For
example, in Python,

x = 5
x = 7





means that we should first assign the value 5 to the variable
x; then, we replace the value stored by x with 7.

In contrast, in Disco (as in some other functional languages),
variables are names for values, and the equals sign means
definition.  In Disco,

x = 5
x = 7





is an error, because x cannot be defined as both 5 and 7;
it cannot be equal to both at the same time.  In other words, it is
like a system of two equations with no solution.
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Definition versus equality testing

In standard mathematical notation, the = symbol can be used in
at least two distinct (yet related) contexts:


	To define things, as in, “Let \(x = 3y + 2\), and consider…”
In this example sentence, \(x = 3y + 2\) defines the
variable x as standing for the expression 3y + 2.


	As a relation which can hold, or not, as in, “If \(x = 3y +
2\), then … but otherwise …”.  In this example sentence,
\(x\) and \(y\) must already be defined, and \(x = 3y + 2\)
is something that is either true or false.




Notice how the exact same expression \(x = 3y + 2\) is used in
both examples, but means two very different things depending on the
context—which is defined entirely by the English words surrounding
the symbols!  Disco does not have the luxury of using English words to
figure out what we mean; instead, Disco must use two different
symbols.  The = symbol is used to express definitions, as in the first example; whereas the == symbol
tests whether two things are equal, as in the second
example.
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Operators

An operator is a function that is written in a special way.  Normal
functions are written before their arguments, like f(x,y).
Binary (two-argument) operators are symbols or words which are written in between
their two arguments, like 1 + 2.  Disco has many built-in
operators which are symbols (like +, *, /, etc.) as well
as a few which are words (like mod, choose, and divides).

Disco also has three unary operators: arithmetic negation (-)
and logical negation (¬ or not) are written in front of their
one argument, and factorial (!) is written after its argument.

When multiple operators are used together, Disco uses their
precedence and associativity to decide how to
interpret it.


Twiddle notation

Disco has a special syntax for talking about operators on their own,
without any arguments: a tilde (or “twiddle”) (~) goes in each
place where an argument would be.  For example, to talk about the
+ operator on its own we can write ~+~.  To talk about the
factorial operator we would write ~!, because factorial only takes
a single argument which goes before it.  Disco will use this “twiddle
notation” when you ask it for the type of an operator:

Disco> :type !
~! : ℕ → ℕ
Disco> :type ~!
~! : ℕ → ℕ





Note that in this case, we can write ! or ~! and Disco
understands either one.

The twiddle notation is also useful when giving an operator as an
argument to a higher-order function:

Disco> reduce(~+~, 0, [1 .. 10])
55







Operator documentation

You can ask for documentation about operators directly,
for example:

Disco> :doc !
~! : ℕ → ℕ

n! computes the factorial of n, that is, 1 * 2 * ... * n.

https://disco-lang.readthedocs.io/en/latest/reference/factorial.html
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Operator precedence and associativity

When we write something like \(1 + 2 \times 3\), how do we know what it
means?  Does it mean \((1 + 2) \times 3\), or \(1 + (2 \times 3)\)?  Of course,
you are familiar with the usual “order of operations”, where
multiplication comes before addition, so in fact \(1 + 2 \times 3\) should
be interpreted as \(1 + (2 \times 3) = 1 + 6 = 7\).

Another way to say this is that multiplication has higher precedence
than addition.  If we think of operators as “magnets” that attract
operands, higher precedence operators are like “stronger magnets”.

Another issue arises when operators are repeated, or when operators
with the same precedence are used together.  For example, does
\(4 - 3 - 2 - 1\) mean \(((4 - 3) - 2) - 1\) or \(4 -
(3 - (2 - 1))\)? In fact, it means the former, because addition and
subtraction are done “left to right”; we say they are left
associative.  On the other hand, exponentiation is right associative,
meaning that 1 ^ 2 ^ 3 ^ 4 = 1 ^ (2 ^ (3 ^ 4)).

Every operator in Disco has a precedence level and associtivity, and
Disco uses these to determine where to put parentheses in
expressions like 1 + 2 * 3 or 5 > 2 ^ 2 + 1 and 7 > 2 ==>
true.  You might have memorized something like PEMDAS, but Disco has
so many operators that memorizing their precedence levels is out of
the question!  Instead, we can use the :doc command to show us the
precedence level and associativity of different operators.

Disco> :doc ^
~^~ : ℕ × ℕ → ℕ
precedence level 13, right associative

Disco> :doc +
~+~ : ℕ × ℕ → ℕ
precedence level 7, left associative

Disco> :doc >
~>~ : ℕ × ℕ → Bool
precedence level 5, right associative

Disco> :doc and
~and~ : Bool × Bool → Bool
precedence level 4, right associative

Disco> :doc ==>
~==>~ : Bool × Bool → Bool
precedence level 2, right associative
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Case expressions

We can use “case expressions” to choose among multiple alternatives.


Basic case expressions with conditions

The basic form of a case expression is as follows:

{? alternative1   if  condition1,
   alternative2   if  condition2,
   ...
   alternativeN   otherwise
?}





This will try each condition, starting with the first,
until finding the first condition that is true.  Then the value of the
entire case expression will be equal to the corresponding alternative.
The otherwise case will always be chosen if it is reached.
Each condition must be an expression of type Bool; the
alternatives can have any type (though they must all have the same
type, whatever it is).

For example, consider the definition of the caseExample function
below:

caseExample : N -> N
caseExample(n) =
  {? n + 2    if n < 10 \/ n > 20,
     0        if n == 13,
     77n^3    if n == 23,
     n^2      otherwise
  ?}





Here are a few sample inputs and outputs for caseExample, with an
explanation of each:


	caseExample(5) == 7: the first condition is true (since 5 < 10),
so the result is 5 + 2.


	caseExample(23) == 25: the first condition is again true (since
23 > 20), so the result is 23 + 2. Note that the first true
condition is always chosen, so it does not matter that the later
condition n == 23 would also be true.


	caseExample(13) == 0: the first condition is false (13 is neither
< 10 nor > 20, but the second condition (13 == 13) is true.


	caseExample(12) == 144: the first three conditions are all false,
so the otherwise case is used, with the result 12^2.




If none of the conditions in a case expression are true, it is an
error: see Value did not match any of the branches in a case expression.



Case expressions with conditions and patterns

More generally, case expressions can use pattern matching in addition to Boolean conditions, and each alternative in
a case expression can have multiple conditions.  The most general form of a
case expression is as follows:

{? alternative1   guard11 guard12 ...,
   alternative2   guard21 guard22 ...,
   ...
?}





where each guard has one of two forms:


	if <condition>.  This guard succeeds if the condition is true.


	if <expression> is <pattern>.  This guard succeeds if the given
expression matches the pattern;
furthermore, any variables in the pattern will be
defined locally within the corresponding alternative as well as
any subsequent guards in the same clause.




The keyword when can also be used as a synonym for if.





          

      

      

    

  

  
    

    Comments
    

    
 
  

    
      
          
            
  
Comments

Comments in Disco can be written using --.  Anything from --
to the end of the line is a comment which Disco will ignore.
Comments can be used to write notes to yourself or explanations to
others, to write your name in a .disco file, and so on.

Disco> 1 + 2 -- Disco will ignore this
3





See also documentation, which is a special kind of
comment using ||| instead of --.
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Documentation

Disco allows special documentation comments, which
begin with three vertical bars (|||) at the beginning of a line.
Anything written after ||| is documentation which will be attached
to the next definition (either a type definition or a
variable definition).  This documentation can later
be accessed with the :doc command.  For example, suppose we have the
following in a file called cool.disco:


example/cool.disco

-- This is a comment that will be ignored.
||| f is a cool function which computes a thing.
||| It has two lines of documentation.
f : N -> N
f(x) = x + 7







Then at the disco prompt we can load the file, and see the
documentation for f using the :doc command:

Disco> :load cool.disco
Loading cool.disco...
Loaded.
Disco> :doc f
f : ℕ → ℕ

f is a cool function which computes a thing.
It has two lines of documentation.
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Types

Every expression in disco has a type, which
tells us what kind of value will result when we evaluate the
expression.  For example, if an expression has type N, it means we
are guaranteed to get a natural number as a result
once the expression is done being evaluated.

The type of an expression thus represents a promise or guarantee
about the behavior of a program.  Checking that all the types in a
program match up can also be seen as a way of predicting or
analyzing the behavior of a program without actually running it.

Each type can be thought of as a collection of values which all have a
similar “shape”.

The type of each variable in Disco must be declared with a type
signature.  We can also give Disco hints about the
intended type of an expression using a type annotation.  We can define our own new types using a type
definition.

In some situations, Disco may be willing to accept something of one
type when it was expecting another: specifically, when the given type
is a subtype of the one it was expecting.



	Base types

	Function types

	Polymorphism

	Algebraic types

	Collection types

	Propositions

	Subtypes

	Subtyping for algebraic types
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Base types

Base types are the fundamental types that define the possible kinds
of simple data values in Disco.



	Booleans

	Numeric types
	Natural numbers

	Integers

	Fractional numbers

	Rational numbers





	Characters
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Booleans

The type of booleans is written Bool or Boolean.  There are
exactly two values of type Boolean: false and true (which
can also be written False and True).

Logical operators can be used to manipulate
Boolean values, and expressions of type Boolean can be used as
conditions in a case expression.
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Numeric types



	Natural numbers

	Integers

	Fractional numbers

	Rational numbers





Disco has four types which represent numbers:


	Natural numbers, written N, ℕ, Nat, or
Natural.  These represent the counting numbers 0, 1, 2,
… which can be added and multiplied.


Disco> :type 5
5 : ℕ










	Integers, written Z, ℤ, Int, or
Integer, allow negative numbers such as -5.  They extend the
natural numbers with subtraction.


Disco> :type -5
-5 : ℤ










	Fractional numbers, written F, 𝔽,
Frac, or Fractional, allow fractions like 2/3.  They
extend the natural numbers with division.


Disco> :type 2/3
2 / 3 : 𝔽










	Rational numbers, written Q, ℚ, or
Rational, allow both negative and fractional numbers, such as
-2/3.


Disco> :type -2/3
-2 / 3 : ℚ












We can arrange the four numeric types in a diamond shape, like this:

[image: Diamond lattice]
Each type is a subset, or subtype, of the type or types above
it.  For example, the fact that \(\mathbb{N}\) is below
\(\mathbb{Z}\) means that every natural number is also an integer.


	The values of every numeric type can be added
and multiplied.


	The arrow labelled \(x-y\) indicates that going up and to the
left in the diamond (i.e. from \(\mathbb{N}\) to Z or F to Q)
corresponds to adding the ability to do subtraction. That is, values
of types on the upper left of the diamond (\(\mathbb{Z}\) and
\(\mathbb{Q}\)) can also be subtracted.


	Going up and to the right corresponds to adding the ability to do
division; that is, values of the types on the upper right of the
diamond (\(\mathbb{F}\) and \(\mathbb{Q}\)) can also be
divided.


	To move down and to the right (i.e. from \(\mathbb{Z}\) to \(\mathbb{N}\), or from
\(\mathbb{Q}\) to \(\mathbb{F}\)), you can use absolute value.


	To move down and to the left (i.e. from \(\mathbb{F}\) to \(\mathbb{N}\), or from
\(\mathbb{Q}\) to \(\mathbb{Z}\)), you can take the floor or ceiling.
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Natural numbers

The type of natural numbers is written N, ℕ, Nat, or
Natural (Disco always prints it as ℕ, but you can use any of
these names when writing code).  The natural numbers include the
counting numbers 0, 1, 2, 3, 4, 5, …

Adding or multiplying two natural numbers yields another natural number:

Disco> :type 2 + 3
5 : ℕ
Disco> :type 2 * 3
6 : ℕ





Natural numbers cannot be directly subtracted or
divided.  However, N is a subtype of all
the other numeric types, so using subtraction or division with natural
numbers will cause them to be automatically converted into a
different type like integers or rationals:

Disco> :type 2 - 3
2 - 3 : ℤ
Disco> :type 2 / 3
2 / 3 : 𝔽





Note that some mathematicians use the phrase “natural numbers” to mean
the set of positive numbers 1, 2, 3, …, that is, they do not include
zero.  However, in the context of computer science, “natural numbers”
almost always includes zero.
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Integers

The type of integers is written Z, ℤ, Int, or
Integer.  The integers include the positive and negative
counting numbers (as well as zero): …, -3, -2, -1, 0, 1, 2, 3, …

Adding, multiplying, or
subtracting two integers yields another
integer. Trying to divide two integers will
automatically convert the result to a rational number:

Disco> :type 2 * (-3)
2 * (-3) : ℤ
Disco> :type 2 / (-3)
2 / (-3) : ℚ
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Fractional numbers

The type of fractional numbers is written F, 𝔽, Frac, or
Fractional.  The fractional numbers include all the natural
numbers (0, 1, 2, …) along with all the positive fractions formed
from the ratio of two natural numbers (such as 1/2, 13/7, 56/57, …)

Adding, multiplying, or
dividing two fractional numbers yields another
fractional number. Trying to subtract two
fractional numbers will automatically convert the result to a
rational number:

Disco> :type (1/2) * (2/3)
1 / 2 * 2 / 3 : 𝔽
Disco> :type 1/2 - 2/3
1 / 2 - 2 / 3 : ℚ





The special sets ℕ (natural numbers), ℤ (integers), and ℚ (rational
numbers) are very common in mathematics and computer science, but the
set of fractional numbers 𝔽 is not common at all (in fact, I made up
the name and the notation).  People usually start with the natural
numbers ℕ, extend them with subtraction to get the integers ℤ, and
then extend those again with division to get the rational numbers ℚ.
However, there is no reason at all that we can’t do it in the other
order: first extend the natural numbers ℕ with division to get the
fractional numbers 𝔽, then extend with subtraction to get ℚ.  Having
all four types in Disco (even though one of them is not very common in
mathematical practice) makes many things simpler and more elegant.
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Rational numbers

The type of rational numbers is written Q, ℚ, or
Rational.  The rational numbers can be thought of as the
combination of 𝔽 and ℤ, and include zero, positive and
negative counting numbers, and positive and negative fractions.

Disco> :type -3/5
-3 / 5 : ℚ





Doing any of the four arithmetic operations
(addition, multiplication,
subtraction or
division) on two rational numbers results in another rational number.

Note that Disco does not have any way to work with irrational
numbers such as \(\pi\) or \(\sqrt{2}\); such numbers are
typically not needed in discrete mathematics, and including them would
make the language much more complicated.
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Characters

The type of characters is written Char.  Values of this type
represent single characters (e.g. a letter, a digit, punctuation,
etc.).  Technically, a Char value represents any
Unicode [https://home.unicode.org/] codepoint.

Characters are written using single quotes.  For example,

mychar : Char
mychar = 'g'





Certain special characters can be written using escape sequences,
consisting of a backslash followed by another character:


	\n represents a newline character


	\t represents a tab character


	\' represents a single quote


	\" represents a double quote


	\\ represents an actual (single) backslash character




A sequence of characters is known as a string.
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Function types

Function types represent functions that take
inputs and yield outputs.  The type of functions that
take inputs of type A and yield outputs of type B is written A
-> B (or A → B).

Every function in Disco takes exactly one input and produces exactly
one output.  “Multi-argument” functions can be represented using a
pair type as the input type. For example, the
type of a function taking two natural numbers as input and producing a
rational number as output could be written N × N → Q.

Note that if A and B are types, then A -> B is itself a
type, which can be used in all the same ways as any other type. In
other words, functions in Disco are “first-class”, which means they
can be used in the same ways as any other values: for example,
functions can be given as input to other functions, or returned as output, we can have lists of
functions, etc.

Function values cannot be compared, however, because
in general this would require testing the functions on every single
possible input, of which there might be infinitely many.




          

      

      

    

  

  
    

    Polymorphism
    

    
 
  

    
      
          
            
  
Polymorphism

Sometimes, we want to express the fact that a certain function will
work for any input type at all.  For example, consider a function to
find the length of a list of natural numbers:

lengthN : List(N) -> N
lengthN([]) = 0
lengthN(_ :: xs) = 1 + lengthN(xs)





Or how about a function to find the length of a list of rational
numbers:

lengthQ : List(Q) -> Q
lengthQ([]) = 0
lengthQ(_ :: xs) = 1 + lengthQ(xs)





It is easy to see that lengthN and lengthQ are identical
except for their types, and that it is going to be very tedious if we
have to write a different version of this function for every possible
element type.  The length of a list does not depend on
the elements at all, so we would like to be able to define it once and
for all, in a way that will work for any type of list.

Indeed, we can do exactly that, by using a type variable (any name that starts with a lowercase letter) in place of
the concrete element type:

length : List(a) -> N
length([]) = 0
length(_ :: xs) = 1 + length(xs)





Here, the variable a can stand for any type.  This expresses both
a requirement that the definition of length does not care what type
a is (and disco will actually check to make sure that is the
case), and a promise that length can be used on any particular
list.  For example,

Disco> length [1,2,3]
3
Disco> length [True, False]
2





On the other hand, suppose we tried to define this function, which
adds one to every element of a list:

incr : List(a) -> List(a)
incr([]) = []
incr(x :: xs) = (x + 1) :: incr(xs)





Disco does not accept this definition.  The problem is that although
it promises that it will work on lists of any type, it doesn’t: it
tries to add one to the elements, and adding 1 is only something that
works for some types.  For example, it doesn’t make sense to add 1 to
every element in a list of Booleans.  incr will work fine if we
give it a more specific type, such as List(N) -> List(N).

Another good example is function composition, which takes two
functions and connects the output of one function to the input of the
other, creating a new function representing the “pipeline” of doing
one function then the other.  The input and output types of the
functions don’t matter at all — other than the fact that the output
type of the one function has to match the input type of the other.  We
can write it as follows:

compose : (b -> c) * (a -> b) -> (a -> c)
compose(f,g) = \x. f(g(x))





a, b, and c can all stand for different types (although
they are not required to be different).  Notice, however, that the
input type of the first function is b, and the output type of the
second function is also b—hence no matter what type b
represents, they must be the same.  The function that results takes an
input of type a and ultimately produces an output of type c
after running the input through both functions.

Note that type definitions can also be polymorphic;
see that page for more information.
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Algebraic types

Algebraic types are the building blocks that let us build up more
complex types.



	Unit type

	Pair types
	n-tuples and nested pairs





	Sum types
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Unit type

Unit is a special built-in type with only a single value, which
can be written unit (or ■, U+25A0 BLACK SQUARE).

Disco> :type unit
■ : Unit
Disco> unit
■
Disco> ■
■





This is not very useful on its own, but becomes very useful when
combined with sum and pair types to create custom recursive algebraic types.
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Pair types

Pair types, or product types, represent ordered pairs of
values. Suppose A and B are types. Then:


	A * B (also written A × B) is a pair type (also known
as a product type or Cartesian product).  It represents the set of
all possible pairs where the first element has type A and the
second element has type B.


	A pair is written (a, b) (where a and b can be arbitrary
expressions).  Specifically, if a : A and b : B, then the
ordered pair (a, b) has type A * B.  For example:


Disco> :type (1, True)
(1, true) : ℕ × Bool
Disco> :type (-7, -3)
(-7, -3) : ℤ × ℤ












Pair types are commonly used to represent functions that take multiple
inputs.  For example, f : N * Z -> Q means that f takes a
pair of a natural number and an integer as input.  Such functions
are often defined via pattern matching on the pair,
like so:

f : N * Z -> Z
f(n,z) = 3n - z






n-tuples and nested pairs

We have seen that A * B is a type of pairs of values.  What
about triples, quadruples, … n-tuples of values?  The answer is
simple:


	triples are written (x,y,z) and have types like A * B * C;


	quadruples are written (w,x,y,z) and have types like A * B *
C * D;


	and so on.




So, for example, a function taking a quintuple of values could be
written like this:

funTaking5Tuple : N * Z * List(N) * Q * Bool -> Int
funTaking5Tuple(n,z,l,q,b) = ...






Note

General n-tuples actually are not specially built in at all:
rather, everything is actually built out of nested pairs.  For
convenience, pair types and values both associate to the right,
that is,


	the type A * B * C is interpreted as A * (B * C), and


	correspondingly, (x, y, z) is interpreted as (x, (y, z)).




So, for example, the definition of the function funTaking5Tuple
from above is really shorthand for

funTaking5Tuple : N * (Z * (List(N) * (Q * Bool))) -> Int
funTaking5Tuple(n,(z,(l,(q,b)))) = ...





Typically one can just use triples or 5-tuples or whatever and not
think about this, but occasionally it’s helpful to understand the
way things are represented with nested pairs under the hood.
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Sum types

Sum types represent situations where we have a value which could be
either one thing or another.  Suppose A and B are types. Then:


	A + B is a sum type (also known as a disjoint union).  It
represents a disjoint union of the types A and B.  That
is, the values of A + B can be either a value of type A, or
a value of type B.


	A value of type A + B can be written either left(a), where
a is an arbitrary expression of type A,
or right(b), where b is an arbitrary expression of type
B.  For example:


Disco> left(3) : N + Bool
left(3)
Disco> right(false) : N + Bool
right(false)












Note that the left or right ensures that A + B really does
represent a disjoint union.  For example, although the usual
union operator is idempotent, that is,
\(\mathbb{N} \cup \mathbb{N} = \mathbb{N}\), with a disjoint union
of types N + N is not at all the same as N.  Elements of N +
N look like either left(3) or right(3), that is, N + N
includes two copies of each natural number.
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Collection types

Collection types represent various ways to store collections of values.



	Sets
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Sets

For any type T,  Set(T) is the type of finite sets with
elements of type T.


	The empty set is written {}.


	A set with specific elements can be written like this: {1, 2, 3}.


	An ellipsis can be used to generate a range of
elements.  For example,


Disco> {1 .. 5}
{1, 2, 3, 4, 5}
Disco> {1, 3 .. 9}
{1, 3, 5, 7, 9}










	Set comprehension notation can also be used,
for example:


Disco> {x^2 + 1 | x in {1 .. 10}, x > 4}
{26, 37, 50, 65, 82, 101}










	The built-in set function can be used to convert other
collections (e.g. lists) to sets:


Disco> set([1,2,3,2,3])
{1, 2, 3}
Disco> set("hello")
{'e', 'h', 'l', 'o'}












The order of elements in a set does not matter, nor does the number of
copies of an element.  For example,

Disco> {3,3,1,2} == {1,1,2,2,3,3}
true
Disco> {3, 3, 1, 2}
{1, 2, 3}





To check whether a set contains a given element, one can use the
elem operator (also written ∈):

Disco> 2 elem {1,2,3}
true
Disco> 5 elem {1,2,3}
false
Disco> 2 ∈ {1,2,3}
true





Sets support various operations, including size,
union, intersection,
difference, subset, and power set.
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Propositions

Prop is the type of propositions.  A proposition is a statement
that could be true or false.  Prop is very similar to Bool;
the main difference is that whereas any Bool can always be
evaluated to see if it is true or false, this may not be
possible for a Prop due to the use of quantifiers (forall and
exists).

Any Boolean expression can be used as a proposition.
For example, true, x > 5, and (x < y) -> ((x == 2) \/ (x ==
3)) can all be used as propositions.

However, unlike Boolean expressions, propositions can use quantifiers, that is, forall or exists.  For example,
forall x : Z. x^2 >= 0 is a Prop (but not a Bool).

If you type a proposition at the Disco prompt, it will simply print
<Prop> and refuse to evaluate it.  If you want to get an idea of
whether a proposition is true or false, you have two options:


	The built-in holds function tries its best to determine whether
a proposition is true or false.  If it returns a value at all, it is
definitely correct.  For example,



	holds ((5 < 3) \/ ((2 < 1) -> false)) yields true


	holds (forall p:Bool. forall q:Bool. (p \/ q) <-> (q \/ p))
yields true


	holds (forall p:Bool. forall q:Bool. (p \/ q) <-> (p /\ q))
yields false


	holds (forall n:N. n < 529) yields false







However, sometimes it may simply get stuck in an infinite loop.  For
example, holds (forall n:N. n >= 0) will simply get stuck. Even
though it is obvious to us that this proposition is true, holds
is not smart enough to see this; it simply tries evaluating n >=
0 for every natural number, which will never finish.



	One can also use the :test command.  This command makes a best
effort to evaluate a proposition, but only trying a finite number of
examples for infinite domains.  Additionally, in many cases it can
output much more information than a simple true or false,
for example, showing a counterexample if a forall is false, or a
witness if an exists is true.  For example,



	:test forall p:Bool. forall q:Bool. (p \/ q) <-> (p /\ q)
prints


- Certainly false: ∀p. ∀q. p \/ q <-> p /\ q
  Counterexample:
    p = false
    q = true










	However, :test forall n:N. n < 529 prints


- Possibly true: ∀n. n < 529
  Checked 100 possibilities without finding a counterexample.








Obviously this proposition is false, but Disco apparently does
not try a big enough value of n to be able to tell.












Note that at the moment it is not possible to combine propositions
using logical operators like /\, \/, or
->. For example, Disco does not currently accept something like
(forall x : N. x >= 0) /\ (exists x : N. x == 3), although this is
certainly a proposition from a mathematical point of view.  This is
something that may be added in the future.
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Subtypes

In some cases, Disco is willing to accept one type in place of
another, when this is known to be safe.  For example, suppose we have
the following definitions:

f : N -> N
f(n) = sqrt(n) + 1

g : Z -> Z
g(n) = n - 5

x : N
x = 16

y : Z
y = -10





Of course we can give x as an input to f, because the type of f says
it takes natural numbers as input, and x is a natural number.
Likewise, the type of y matches g’s input type, so we can give
y as an input to g:

Disco> f(x)
5
Disco> g(y)
-15





On the other hand, we cannot give y as an input to f.  f
is expecting only natural numbers as input, and it might not be safe
to give it a negative number.  In fact, in this case, it’s definitely
not safe: we cannot take the square root of a negative number.

Disco> f(y)
Error: typechecking failed.
https://disco-lang.readthedocs.io/en/latest/reference/typecheck-fail.html





However, we can give x as an input to g:

Disco> g(x)
11





Why is that?  Well, mathematically speaking, every natural number is
also an integer, so if a function is prepared to receive any integer
(positive or negative) as input, then giving it only natural numbers
(i.e. nonnegative integers) is perfectly safe.  Intuitively, disco
automatically “converts” the natural number into an integer before
giving it to g.

Since it is always safe to use a natural number anywhere an integer is
expected, we say that N is a subtype of Z.

The four basic numeric types can be arranged in a
diamond shape, like so:

[image: Diamond lattice]
Each type is a subtype of the type or types above it.  That is, Z
is a subtype of Q, F is a subtype of Q, and N is a
subtype of all the others.



Subtyping for algebraic types

In addition to the subtype relationships between the basic numeric
types, more complex algebraic types can be subtypes of each other too.


	For pair types, A * B is a subtype of
C * D exactly when A is a subtype of C, and B is a
subtype of D.  For example, given these definitions:


g : Z * Q -> Q
g(x,y) = y / (3x)

p : N * N
p = (2,5)





It is allowed to give p as an input to g:

Disco> p(g)
5/6





Since N is a subtype of Z, and N is a subtype of
Q, therefore N * N is a subtype of Z * Q.






	Similarly, for sum types, A + B is a subtype of
C + D exactly when A is a subtype of C, and B is a
subtype of D.  For example, given these definitions:


g : Z + Q -> Q
g(left(z)) = z / 2
g(right(y)) = 3y

p : N + Z
p = left(1)

r : N + Z
r = right(-2)





It is allowed to give p and r as inputs to g:

Disco> g(p)
1/2
Disco> g(r)
-6





Since N is a subtype of Z, and N is a subtype of
Q, therefore N + N is a subtype of Z + Q.






	Function types work a little differently.  A -> B is a subtype
of C -> D exactly when C is a subtype of A and B
is a subtype of D.  Notice how the relationship is reversed for
the input types.  Working out why this makes sense is left as an
interesting exercise for the reader.
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Functions



	Function types

	Pattern matching

	Anonymous functions

	Higher-order functions





A function is an input-output relation, that is, we can think of a
function as a machine, or process, that takes inputs and produces
outputs according to some rule(s).  For each element of the domain,
or input type, a function specifies a single element of the
codomain, or output type.

The type of a function with domain A and
codomain B is written A -> B (or A → B).

Two simple examples of functions are shown below.

f : N -> N
f(n) = 3n + 1

g : N * N -> Q
g(x,y) = f(x) / (y - 1)





The function f takes natural numbers as input and
produces natural numbers as output; for a given input n it
produces the output 3n + 1.

The function g takes pairs of natural
numbers as input, and produces rational numbers;
given the pair (x,y), it produces f(x) / (y - 1) as output.


	Functions can be given names and defined by pattern-matching, as in the examples above.


	Functions can also be defined anonymously, using lambda
notation.  For example,


\n. 3n + 1








is the function which takes an input called n and outputs 3n +
1.  This is the same function as the example function f above.



	Attempting to print a function value will simply result in the type
of the function being printed as a placeholder:


Disco> (\n. 3n+1)
<ℕ → ℕ>








This is because once a program is running, Disco has no way in
general to recover the textual definition of a function.
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Function types

Function types represent functions that take
inputs and yield outputs.  The type of functions that
take inputs of type A and yield outputs of type B is written A
-> B (or A → B).

Every function in Disco takes exactly one input and produces exactly
one output.  “Multi-argument” functions can be represented using a
pair type as the input type. For example, the
type of a function taking two natural numbers as input and producing a
rational number as output could be written N × N → Q.

Note that if A and B are types, then A -> B is itself a
type, which can be used in all the same ways as any other type. In
other words, functions in Disco are “first-class”, which means they
can be used in the same ways as any other values: for example,
functions can be given as input to other functions, or returned as output, we can have lists of
functions, etc.

Function values cannot be compared, however, because
in general this would require testing the functions on every single
possible input, of which there might be infinitely many.
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Pattern matching

Functions in Disco can be defined using pattern
matching, which in general looks like this:

f(pattern) = expression





This means, roughly, “if the input to the function f looks like
pattern, then the output of f on that input should be
expression.”  For example, f(5) = 29 means that if the input
to f is the number 5, then the output should be 29.

Functions can be defined by multiple pattern-match clauses; Disco
tries the clauses in order, one by one, and picks the first one that
matches.  (Note that case expressions can also be used
to define functions, in case more sophisticated logic is needed.)  For
example,

f(2) = 12
f(2k) = k+1
f(n) = 2n+1





means:


	First, if the input to f is specifically 2, then
return 12;


	next, if the input to f is even (i.e. of the form 2k for
some integer k), return k+1;


	finally, for any other input, which we will call n, return
2n+1.




(If none of the clauses in a function definition matches an input, it
is an error: see Value did not match any of the branches in a case expression.)

The above example uses a literal pattern, an
arithmetic pattern, and a variable
pattern; see the links below for more specific
information about the different types of patterns that can be used.



	Literal pattern

	Variable pattern

	Wildcard patterns

	Arithmetic patterns

	Tuple patterns
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Literal pattern

A literal pattern consists of a single specific
value.  For example,

f(5) = "hi"





uses 5 as a literal pattern, and means that on the specific input
5, the function f should output "hi".

Literal patterns can be used with


	The unit value, e.g. f(unit) = ...


	Booleans, e.g. f(true) = ...


	Natural numbers, e.g. f(5) = ...


	Integers, e.g. f(-5) = ...


	Rational numbers, e.g. f(1/2) = ...


	Characters, e.g. f('x') = ...


	Strings, e.g. f("hello") = ...




Note that f(-5) = ... and f(1/2) = ... are technically
arithmetic patterns rather than true literal
patterns, but the distinction does not matter very much.
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Variable pattern

A variable pattern simply consists of a single
variable.  It always successfully matches any input; within the
corresponding clause, the input can be referred to by the variable
name.  For example,

f(n) = 3n + 1





means “for any input to the function f, which we will call
n, output the value which is one more than three times the input
n.”

The variable defined by a variable pattern is local to the clause
and cannot be referenced anywhere else.  For example:

Disco> f : N -> N
Disco> f(n) = 3n+1
Disco> f(3)
10
Disco> n
Error: there is nothing named n.
https://disco-lang.readthedocs.io/en/latest/reference/unbound.html





This also means multiple function definitions can use the same
variable name without interfering with one another at all.
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Wildcard patterns

A wildcard pattern is just an underscore character,
indicating that we do not care about a particular input.  Just like a
variable pattern, it successfully matches any
input; unlike a variable pattern, it does not define a new name.

For example,

f(_) = 10





defines the function which always returns 10, no matter what input
it is given.  This could also be written

f(n) = 10





but since n is not used, we can explicitly indicate that we do not
care about it by replacing it with a wildcard pattern _.
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Arithmetic patterns

An arithmetic pattern consists of an arithmetic
expression, containing one or more variables, used as a pattern.  For
example,

f(n+2) = ...
f(2n+7) = ...
f(p/q) = ...
f(-p/(q+1)) = ...





are all examples of arithmetic patterns.  A full description of how
arithmetic patterns work would be too complex to include here; put
simply, an arithmetic pattern matches whenever the input is a number
of the given form.  For example, f(2n+1) = ... matches whenever
there is a number n such that the input is of the form 2n+1.
This is a common way to define functions depending on whether the
input is even or odd:

f : N -> N
f(2n)   = ... n ...     -- even inputs
f(2n+1) = ... n ...     -- odd inputs





Note that f(p/q) matches whenever the input is a rational number
with a numerator of p and a denominator of q.  In all other
cases, arithmetic patterns are generally required to have only one
variable.  Otherwise, the pattern is ambiguous.  For example, f(a+b)
= ... is not allowed, since a + b = n has many solutions for a
given n; for a given input, there is generally no way to determine
what a and b should be.

Arithmetic patterns can sometimes allow us to define things in an
alternative way that does not require subtraction.  For example, one way to define the factorial function is as follows:

fact : N -> N
fact(0)   = 1
fact(n+1) = (n+1) * fact(n)





In the second clause, instead of writing fact(n) = n * fact(n .-
1), we can express that the clause only applies to natural numbers
that are one more than another natural number.
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Tuple patterns

A tuple pattern consists of a tuple expression (i.e. a pair, triple, …) used as a pattern.  Each
component of the tuple can itself be any pattern.  The simplest kind
of tuple pattern would be a pair with variables,
like

f : N * N -> Q
f(x,y) = ...





This is extremely common when defining functions that take multiple
inputs.  Functions that take more than two inputs can also be defined
similarly:

f : N * Z * Z -> Z
f(a,b,c) = ...





(See the page on pair types for more details on
how n-tuples work.)

The components of a pair pattern can themselves be any pattern,
however, not just variables.  For example,

f : N * N -> N
f(2n+1, 3) = 17
f(x, y) = x + y





The above example defines f to yield 17 when applied to any
tuple consisting of an odd number paired with 3 (using an
arithmetic pattern and a literal pattern), and x + y when applied to any other pair (x,y).
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Anonymous functions

Sometimes, especially when using higher-order functions, it is convenient to write down a function without
having to give it a name.  This can be done using a so-called “lambda
expression”.  In its simplest form, this looks like

\ <var> . <expression>





where <var> stands for any variable name, and <expression> stands
for any expression, which is allowed to use the
variable.  This represents a function which takes
<var> as input, and returns <expression> as output.

λ (U+033B, GREEK SMALL LETTER LAMBDA) can also be used in place of
\ (a backslash is used because it looks kind of like λ).

For example, \n. 3n+1 is the function which returns one more than
three times its input.

Disco> (\n. 3n+1)(6)
19






	The thing after the lambda or backslash can actually be any
pattern, not just a variable.  For example,


\(x,y). x + 2y








is the function which takes a pair of numbers
as input and returns the sum of the first number and twice the
second number.



	The variable after the lambda can optionally be annotated with its
type, as in \ <var> : <type> . <expression>.  For example,


\x:Z. x + 5








is the function of type Z -> Z which returns 5 more than its
input.  Without the type annotation, Disco would infer \x. x + 5
to have type N -> N instead.
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Higher-order functions

A higher-order function is a function which takes
other functions as input.  For example:

twice : (N -> N) * N -> N
twice(f, x) = f(f(x))





The twice function takes a function on natural numbers f,
along with a natural number n, as input, and calls f twice on
n.
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Collections

Disco has several built-in collection types
(such as lists, bags, and sets)
which represent collections of values.  The pages linked below explain
the different ways to create and use collections, and the operations
which can be used on them.



	Size

	Cartesian product

	Ellipsis

	Set operations

	Power set

	Comprehensions
	Examples

	Details

	Specification
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Size

The size of a collection c (a list, bag, or set) can be found using the
notation |c|.  For example,

Disco> |{1,2,3}|
3
Disco> |{1,2,3} union {2,3,4,4}|
4
Disco> |[2 .. 7]|
6
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Cartesian product

The Cartesian product operator, written >< (or, using Unicode,
as ×), operates on two collections of the same type (either
sets, bags, or lists), and
forms the collection of all possible pairs with one element taken from
the first collection and the other from the second.


	On lists, the order matters: the resulting list has the first
element of the first list matched with all elements of the second
list, then the second element of the first list matched with all
elements of the second list, and so on.


Disco> [2,1,1] >< [6,7]
[(2, 6), (2, 7), (1, 6), (1, 7), (1, 6), (1, 7)]










	On sets, we simply get the set of all unique pairs.


Disco> {2,1,1} >< {6,7}
{(1, 6), (1, 7), (2, 6), (2, 7)}










	The behavior of Cartesian product on bags is slightly less
intuitive, but follows directly from the fact that taking the
Cartesian product of two lists and then converting the result to a
bag always yields the same result as first converting the two lists
to bags and then taking the Cartesian product (although the latter
can be more efficient).  That is, for all lists l1 and l2,
bag(l1 >< l2) == bag(l1) >< bag(l2).

In particular, if a is an element of bag A with a multiplicity
of m, and b is an element of bag B with a multiplicity of
n, then (a,b) is an element of A >< B with a
multiplicity of m * n.  In other words, we have m * n ways
to form the pair (a,b) if we have m copies of a to
choose from and n copies of b to choose from.


Disco> bag([1,1,2,3]) >< bag([8,7,7,7])
⟅(1, 7) # 6, (1, 8) # 2, (2, 7) # 3, (2, 8), (3, 7) # 3, (3, 8)⟆
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Ellipsis

Sets and lists may be defined using ellipsis,
that is, two or more dots meaning (intuitively) “and so on”.  For
example:

Disco> {1 .. 5}
{1, 2, 3, 4, 5}
Disco> [2, 4 ... 10]
[2, 4, 6, 8, 10]
Disco> [1, 4, 9 ... 100]
[1, 4, 9, 16, 25, 36, 49]





Note, Disco isn’t actually being all that smart here, and it won’t
work for any pattern at all.  For example, it fails miserably to
understand that we want a list of primes:

Disco> [2, 3, 5, 7, 11 ... 100]
[2, 3, 5, 7, 11, 22, 48, 100]





So what is Disco actually doing?  Note first that there must always be
a single number after the dots.


	If there is a single number before the dots:


	If the first number is smaller than the last number, the resulting
list or set starts at the first number and counts up by ones until
reaching the last number.


Disco> {1 .. 5}
{1, 2, 3, 4, 5}










	If the first number is greater than the last number, it counts
down instead of up.


Disco> [10 .. 7]
[10, 9, 8, 7]














	If there are \(k > 1\) numbers before the dots, Disco fits a
\(k-1\)-degree polynomial to the numbers and then extends it
until the next value would be greater than the value after the dots.



	For example, for \(k = 2\), this just means that Disco will
extend the list using a constant gap between consecutive values
(the same as the gap between the first two numbers):


Disco> [1, 3 .. 10]
[1, 3, 5, 7, 9]
Disco> {5, 10 .. 40}
{5, 10, 15, 20, 25, 30, 35, 40}










	For \(k = 3\), Disco will use a quadratic polynomial, which
means we can generate things like the squares or the triangular
numbers:


Disco> [1, 4, 9 ... 100]
[1, 4, 9, 16, 25, 36, 49]
Disco> [1, 3, 6 ... 28]
[1, 3, 6, 10, 15, 21, 28]
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Set operations

The Cartesian product of two finite sets can be found
using the >< operator.

Disco> {1,2,3} >< {'x','y'}
{(1, 'x'), (1, 'y'), (2, 'x'), (2, 'y'), (3, 'x'), (3, 'y')}





The union or intersection of two finite sets can be found using
the union and intersect operators, or using the Unicode
notation ∪ and ∩.

Disco> {1,2,3} union {2,3,4}
{1, 2, 3, 4}
Disco> {1,2,3} intersect {2,3,4}
{2, 3}





The difference of two sets can be found using the set difference
operator, written \:

Disco> {7 .. 12} \ {1 .. 10}
{11, 12}





You can check whether one set is a subset of another using the
subset operator (or the Unicode symbol ⊆):

Disco> {2,3,4} subset {1 .. 10}
true
Disco> {7 .. 11} subset {1 .. 10}
false





Note that Disco does not support the set complement operation, since
the complement of a finite set is infinite whenever the domain is
infinite.
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Power set

The power set of a set is the set of all possible
subsets.  It can be computed using the power function, which takes a
Set(T) and returns a Set(Set(T)):

Disco> power({1,2,3})
{{}, {1}, {1, 2}, {1, 2, 3}, {1, 3}, {2}, {2, 3}, {3}}
Disco> power(set("hi"))
{{}, {'h'}, {'h', 'i'}, {'i'}}
Disco> power({})
{{}}
Disco> power(power({}))
{{}, {{}}}
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Comprehensions

Comprehension notation can be used to describe collections such as
sets or lists.  The general syntax for a
set comprehension is

{ expression | qualifiers }





with a single expression, followed by a vertical bar |, followed
by a list of one or more qualifiers.  The idea is introduced through
some examples below; for the precise details, see the
Details section.

List comprehensions are similar, but use square brackets
([, ]) instead of curly braces ({, }).


Examples

Disco> {x | x in {1..5}}   -- same as {1..5}
{1, 2, 3, 4, 5}

Disco> {3x | x in {1..5}}  -- multiply each element of {1..5} by 3
{3, 6, 9, 12, 15}

-- Pick out the elements of {1..10} that satisfy the condition
Disco> {x | x in {1 .. 10}, x^2 + 20 == 9x}
{4, 5}

-- Pick out the elements of {1..100} that satisfy all the conditions
Disco> {x | x in {1 .. 100}, x =< 10 \/ x >= 90, x mod 2 == 0}
{2, 4, 6, 8, 10, 90, 92, 94, 96, 98, 100}

-- Products of all combinations of elements from {1..4} and {1, 10, 100}
Disco> {x * y | x in {1 .. 4}, y in {1, 10, 100}}
{1, 2, 3, 4, 10, 20, 30, 40, 100, 200, 300, 400}

-- Pairs of elements from {1..4} where the first is >= the second
Disco> {(x,y) | x in {1 .. 4}, y in {1 .. x}}
{(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (4, 3), (4, 4)}







Details

Each qualifier in a comprehension can be either


	a variable binding of the form <variable> in <set>, e.g. x
in {1 .. 10} or b in {false, true}, or


	a guard, which can be any boolean expression.




A variable binding locally defines a variable and causes it to “loop” through
all the values in the given set.  For example, x in {1 .. 5}
defines the variable x within the comprehension, and makes x
take on each value from 1 through 5 in turn.  Multiple variable
bindings will cause the loops to “nest”.  For example, { (x,y) | x in {1 .. 3},
y in {5 .. 7}} has nine elements: y loops through its three
possible values for each value of x.

Disco> { (x,y) | x in {1 .. 3}, y in {5 .. 7}}
{(1, 5), (1, 6), (1, 7), (2, 5), (2, 6), (2, 7), (3, 5), (3, 6), (3, 7)}





A boolean guard is checked for each combination of variable values to
see if it is true.  Any values of the variables which make the guard
false are discarded.

Finally, any values of the variable(s) which make all the guards
true are used in the expression on the left side of the |, and the
resulting value will become an element of the set.

Putting all this together, for example, {x^2 + y | x in {1 .. 5}, x mod 2 == 1, y in {1 .. x}, x + y > 5} is evaluated as follows:


	x will loop through the values from 1 to 5.


	For each value of x, check whether x mod 2 == 1.  The values
which make this false (2 and 4) are discarded.  The only values of
x left are 1, 3, and 5.


	For each of the remaining values of x, y will loop through
the values from 1 up to x.


	For each value of y, check whether the sum of x and y is
greater than 5.


	Finally, from values of x and y which make it through both
checks, we compute x^2 + y and put the result in the set being
built.




In the end, the result is the set {12, 26, 27, 28, 29, 30}.



Specification


Note

In case you are curious about the precise definition and are not
afraid of the details, the exact way that set comprehensions
work can be defined by the following three equations, making use of
the standard functions each and unions:


	{ e | } = e


	{ e | x in xs, gs } = unions(each(\x. {e | gs}, xs))


	{ e | g, gs } = {? { e | gs } if g, {} otherwise ?}
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Combinatorics

Disco has a growing collection of operations relating to
combinatorics, i.e. counting things.



	Factorial

	Binomial and multinomial coefficients
	Multinomial coefficients
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Factorial

Factorial, written !, is a unary operator
written after its argument, defined as the product of all the natural
numbers from 1 up to \(n\), that is, \(n! = 1 \times 2
\times 3 \times \dots \times n\).

Disco> :doc !
~! : ℕ → ℕ

n! computes the factorial of n, that is, 1 * 2 * ... * n.

https://disco-lang.readthedocs.io/en/latest/reference/factorial.html

Disco> 3!
6
Disco> 4!
24
Disco> 4! == 1 * 2 * 3 * 4
true
Disco> (4!)!
620448401733239439360000
Disco> ((4!)!)!
Error: that number would not even fit in the universe!
Disco> 0!
1





Note that \(0! = 1\) by definition, since a product of zero things
should be the identity value for multiplication.
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Binomial and multinomial coefficients

The binomial coefficient \(\binom n k\) represents the number of
different ways to choose a subset of size \(k\)  out of a set of
size \(n\), and is in general given by the formula

\(\displaystyle \binom n k = \frac{n!}{k!(n-k)!}\)

However, binomial coefficients can be computed more efficiently than
literally using the above formula with factorial,
so Disco has special built-in support for computing them.  Since
\(\binom n k\) is usually pronounced “\(n\) choose \(k\)”,
the Disco syntax is n choose k.  For example:

Disco> 5 choose 2
10
Disco> 7 choose 0
1
Disco> 0 choose 0
1
Disco> 7 choose 8
0
Disco> 100 choose 23
24865270306254660391200






Multinomial coefficients

Disco also has support for multinomial coefficients:

\(\displaystyle \binom{n}{k_1 \quad k_2 \quad \dots \quad k_r} = \frac{n!}{k_1! k_2! \dots k_r! (n - k_1 - k_2 - \dots - k_r)!}\)

is the number of ways to simultaneously choose subsets of size \(k_1,
k_2, \dots, k_r\) out of a set of size \(n\).  In Disco, a multinomial
coefficient results when the second argument to choose is a list
instead of a natural number.  For example:

Disco> 10 choose 2
45
Disco> 10 choose [2]
45
Disco> 10 choose [2,3]
2520
Disco> 10 choose [2,3,5]
2520
Disco> 10 choose [2,3,5] == (10 choose 2) * (8 choose 3) * (5 choose 5)
true
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Error messages

There are many different error messages Disco can generate when
something is wrong.  Each page linked below gives more explanation and
background to help you understand a particular error message.

The error messages in Disco are currently undergoing major
improvements.  If you have a suggestion on how a particular error
message could be improved, please record it at
https://github.com/disco-lang/disco/issues !



	There is nothing named x

	The name x is ambiguous

	The definition of x must have an accompanying type signature

	The expression e must have both a blah type and also…

	Empty case expressions are not allowed

	Value did not match any of the branches in a case expression

	Pattern p contains duplicate variable x

	The pattern p is supposed to have type T, but instead…

	Duplicate type signature for x

	Duplicate definition for x

	Duplicate definition for type T

	Cyclic type definition for T

	Number of arguments does not match

	The type T is not searchable

	There is no built-in or user-defined type named X

	Wildcards are not allowed in expressions

	Not enough/too many arguments for the type T

	Unknown type variable

	Recursive occurrences of T may only have type variables as arguments

	The shape of two types does not match

	Typechecking failed

	Values of type T cannot be…

	Type variable x represents any type, so we cannot assume…
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There is nothing named x

Something in your program, or something you typed at the prompt,
refers to a variable name which is not defined.


	Did you spell the variable name correctly? (Remember that
capitalization matters!)


	Did you forget to import a module which defines the variable you
want?


	Are you trying to refer to a variable outside of the context in
which it is defined?  For example, a parameter to a function can
only be used inside the function itself.


	Did you forget to put double quotes around a string, for example,
hello instead of "hello"?




If you got this error due to something else not on the list above,
please add it as a suggestion [https://github.com/disco-lang/disco/issues/new]!
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The name x is ambiguous

You tried to use a variable which has multiple definitions, so disco
does not know which one you want to use.  The only way this can happen
is if the variable is defined in two different files.  For example,


	The variable is defined both in a.disco and b.disco, and you
have both import a and import b in your code.


	You have defined the variable in your own code, but it is also
defined in one of the files you import.




The simplest solution is to rename one of the conflicting
definitions.  If you can’t or don’t want to do this, you can also make
an “adapter module” to rename a variable without changing the original
file.  For example, suppose we have x defined in our own file as
well as in a.disco.  We can make a new file named b.disco
which contains the following:

import a

y :: N
y = x





Now instead of import a we can say import b, and now we will
be able to use y instead of x.
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The definition of x must have an accompanying type signature

In Disco, you are not allowed to define a variable by simply saying
x = ....  You must also specify the type of a variable
by placing a type signature before it, like this:

x : N   -- a type signature for x
x = 5   -- the definition of x
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The expression e must have both a blah type and also…

This error occurs sometimes when two incompatible types meet: the
context in which an expression is used requires it to have a certain type,
whereas the expression actually has a different type.

For example, consider the following:

Disco> x : N
Disco> x = 5
Disco> x(2)
Error: the expression
  x
must have both a function type and also the incompatible type
  ℕ.





In this example, the reason x must have a function type is because
we applied it to an argument, like x(2).  The only things which
can be applied to arguments are functions.  On the
other hand, we said that the type of x is N, whch is not a
function.
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Empty case expressions are not allowed

Every case expression must have at least one branch.

If you’re getting this error, perhaps everything inside a case
expression ({? ... ?}) is a comment?
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Value did not match any of the branches in a case expression

This means that none of the conditions in a case expression were true.  For example, consider this case expression:

{? 'A'  if  n < 5,
   'B'  if  n > 5
?}





When n == 5 specifically, both conditions will be false,
and this error will be generated.

The reason this is an error is that every expression must have a value; if all the conditions are false, we
do not know what value the whole case expression should have.

This error may also occur when defining a function
via pattern matching, if none of the patterns match
a particular input.  For example, consider the below definition of f:

f : N -> N
f(3) = 99
f(2n) = n





If we call this function on an odd input besides 3, it will generate
an error, since neither of the patterns matches:

Disco> f(5)
Error: value did not match any of the branches in a case expression.





The reason the same error is generated is that internally, function
definitions by cases are translated into case expressions.  For
example, the above definition for f is translated into something
like

f : N -> N
f(m) = {? 99 if m is 3, n if m is 2n ?}
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Pattern p contains duplicate variable x

A pattern is not allowed to contain the same variable
more than once.  For example, the following definition is not allowed,
because the pattern (x,x) contains two occurrences of the variable x.

f :: N*N -> N
f(x,x) = 3
f(x,y) = 7





If you want to define a function which returns 3 whenever its two
arguments are equal, and 7 otherwise, you could define it like
this, using a case expression

f :: N*N -> N
f(x,y) = {? 3 if x == y, 7 otherwise ?}
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The pattern p is supposed to have type T, but instead…

This is a similar sort of error as The expression e must have both a blah type and also…, but concerns
patterns instead of expressions.
On the one hand, disco can figure out what type a
pattern should be based on the type of the function.
On the other hand, the pattern itself may correspond to a different
type.  For example,

Disco> :{
Disco| f : N -> N
Disco| f(x,y) = x + y
Disco| :}
Error: the pattern
  (x, y)
is supposed to have type
  ℕ,
but instead it has a pair type.





In this example, we have declared the type of f to be N -> N,
that is, a function which takes a natural number as input and yields
another natural number as output.  However, we have used the pattern
(x,y) for the input of f, which looks like a value of a
pair type.




          

      

      

    

  

  
    

    Duplicate type signature for x
    

    
 
  

    
      
          
            
  
Duplicate type signature for x

This error message is caused by multiple type signatures for the same variable.  It does not matter if the types
are the same or different; there can only be one type signature per
variable.

Disco> :{
Disco| x : N
Disco| x : N
Disco| :}
Error: duplicate type signature for x.





If this is unexpected, check that you did not misspell a variable name
so it accidentally has the same name as another variable.
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Duplicate definition for x

Just as each variable can only have one type
signature, so each variable can only have one
definition.  Once a variable is defined, it is not
possible to change its value to something different.  This is quite
different than some other languages.  See the documentation
about definitions for more information.
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Duplicate definition for type T

This is very similar to Duplicate definition for x, but for type
definitions instead of variables.  For example,

Disco> type H = N * N
Disco> type H = Z + Q
Error: duplicate definition for type H.
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Cyclic type definition for T

This error occurs when one or more type definitions
form a cycle.

Note that recursive types, i.e. types defined in terms of
themselves, are very much allowed (and useful)!  A
“cyclic type” error only occurs when a type is defined as being
directly equal to itself.

For example:

Disco> :{
Disco| type A = B
Disco| type B = C
Disco| type C = A
Disco| :}
Error: cyclic type definition for A.
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Number of arguments does not match

When defining a function, there are two ways Disco can figure out how
many arguments it takes: by looking at its declared type, and by
looking at the number of arguments in its definition.  This error
results when these are not the same.

For example, the following definition would yield this error:

f : N -> N -> N
f x y z = 3





The declared type of f, namely N -> N -> N, says that it takes
two natural number inputs.  However, the definition f x y z = ...
makes it look like it takes three inputs: x, y, and z.

This is not a terribly informative error message, and it will likely
be improved and/or split out into several separate error messages soon.
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The type T is not searchable

When writing a property using a forall, we are
only allowed to use types which are searchable, that is, types for
which we can effectively generate sample values.  Note this is not the
same thing as being finite.  For example, the type of natural numbers
is searchable even though it is infinite; we can list natural numbers
(either in order or randomly) in order to see which ones make the
property true or false.

Disco> :test forall x:N. x < 10    -- this works as expected
  - Test is false: ∀x. x < 10
    Counterexample:
      x = 10





On the other hand, the function type N -> N is not
searchable: there is no way to list all functions of type N -> N.
The below property is in fact false, but Disco can’t handle it:

Disco> :test forall f : N -> N. f(4) > 6
Error: the type
  ℕ → ℕ
is not searchable (i.e. it cannot be used in a forall).
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There is no built-in or user-defined type named X

This is similar to There is nothing named x, but with types.  You have referred
to a type that does not exist.


	Did you spell the name of the type correctly? (Remember that
capitalization matters!)


	Did you forget to import a module which defines the type you
want?







          

      

      

    

  

  
    

    Wildcards are not allowed in expressions
    

    
 
  

    
      
          
            
  
Wildcards are not allowed in expressions

A wildcard pattern, written using an underscore
(_), can be used in a pattern (on the left side of an equals
sign) to indicate that you don’t care about a certain value.

However, you are not allowed to use a wildcard anywhere on the
right side of an equals sign.  If you promise to give me two books
you can’t just give me one and say you don’t care about the other one;
likewise, if you promise to deliver (say) a pair of natural numbers,
you not allowed to say you don’t care what one of them is:

f : Char -> N * N
f(_) = (_, 3)





The first _ is fine: the function f doesn’t need to care what
Char input it is given.  But the second _ is not OK: f has
promised to return a pair of natural numbers, and it had better
fulfill its promise.
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Not enough/too many arguments for the type T

Some built-in types expect to be given one or more types as arguments (for
example, List and Set both expect one argument; Map expects
two).  You can also define your own types that expect arguments.
These error messages show up when you have given the wrong number of
arguments to a type.  For example:

Disco> t : List
Error: not enough arguments for the type 'List'.
Disco> t : List(N,Q)
Error: too many arguments for the type 'List'.
Disco> type MyType(a,b,c) = List(a) * Set(b) * List(c)
Disco> q : MyType(Char,Bool)
Error: not enough arguments for the type 'MyType'.
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Unknown type variable

This error always refers to a type definition, which
uses a type variable that was not a parameter of the type being
defined.  For example:

Disco> type T(a,b) = N * c
Error: Unknown type variable 'c'.





In this example, we are defining the type T which has parameters
a and b.  We are thus allowed to use a and b anywhere
inside the definition of T.  However, here we use c, which is
not defined.


	Did you misspell a variable name?


	Did you forget to add the variable as a parameter of the type?  For
example, if we want to define a type of parameterized trees, but write
type T = Unit + a * T * T, we would get this error; what we
should write insitead is type T(a) = Unit + a * T(a) * T(a).
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Recursive occurrences of T may only have type variables as arguments

For technical reasons, when defining a parameterized type, any recursive occurrences of the type in its own definition
can only have type variables as arguments.  For example, this is
perfectly OK:

type T(a) = Unit + a * T(a) * T(a)





Notice how every occurrence of T on the right-hand side of the
= has the variable a as an argument.

Even this is OK:

type Alt(a,b) = Unit + a * Alt(b,a)





In this example, the Alt on the right-hand side of the = has
its arguments in the opposite order from the one on the left-hand
side, but that is OK as long as they are all type variables.

These examples, on the other hand, are not OK:

type Bad1(a) = Unit + Bad1(N)
type Bad2(a) = Unit + Bad2(Bad2(a))
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The shape of two types does not match

This is a really horrible, uninformative error message; I’m sorry!  I
hope to improve it soon.

In the meantime, this error is generally caused by the types of
different things not lining up.  For example:

h : Z*Z -> Bool
h(3) = true





In this example, the type of h says that h takes a pair of
integers as input.  However, the definition of h looks like it
takes a single natural number as input, and these types don’t match.

Some tips for pinpointing the error:


	Try narrowing down the source of the error by checking small pieces
of code by themselves.


	Try asking Disco for the types of various pieces at the prompt to
see if they match what you think the type should be.  For example,
Disco can tell us that the type of true is Bool (which
matches the desired output type), but the type of 3 is N
(which does not match).


	Ask for help if you are stuck!
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Typechecking failed

This error message is the absolute worst.  It is used in any and all
situations where something went wrong and Disco couldn’t make sense of
the types in your program.
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Values of type T cannot be…

This error message comes up when you are trying to apply certain
operations to types that do not allow that operation.  For example:


	Trying to subtract or divide
two natural numbers


	Trying to compare two functions
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Type variable x represents any type, so we cannot assume…

A polymorphic function has to be able to work
for any input type. Thus, it cannot assume that input values of a
polymorphic type support any operations in particular.  For example,
the type of the function h below claims it works for any type
a at all, but the implementation of h uses subtraction (which
does not actually work for any type):

h : a -> a
h(x) = x - 3
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Symbols

The following table shows all the fancy Unicode symbols that can be
used in Disco.  The first column shows the symbol itself (suitable for
copy-pasting).  For each symbol, the table shows the corresponding
Unicode codepoint, the LaTeX command that can be used to generate the
symbol, an equivalent ASCII representation that can be used in Disco
to avoid copy-pasting a fancy symbol, and the meaning of the symbol
with a link to the relevant Disco documentation.




	Symbol

	Codepoint

	LaTeX

	ASCII equivalent

	Meaning + documentation





	¬

	U+AC

	\neg

	not

	Not



	∧

	U+2227

	\land

	/\

	And



	∨

	U+2227

	\lor

	\/

	Or



	→

	U+2192

	\to

	->

	Implies; function type



	↔

	U+2192

	\iff

	<->

	If and only if



	≠

	U+2260

	\neq

	/=, !=

	Not equal to



	≤

	U+2264

	\leq

	<=, =<

	Less-than-or-equal-to



	≥

	U+2265

	\geq

	>=, =>

	Greater-than-or-equal-to



	∀

	U+2200

	\forall

	forall

	Universal quantification



	∃

	U+2203

	\exists

	exists

	Existential quantification



	∸

	U+2238

	
	.-

	Saturating subtraction



	∈

	U+2208

	\in

	elem

	Element of



	⊆

	U+2286

	\subseteq

	subset

	Subset of



	∪

	U+222A

	\cup

	union

	Set union



	∩

	U+2229

	\cap

	intersect

	Set intersection



	⨯

	U+2A2F

	\times

	><

	Cartesian product; pair type



	⊎

	U+228E

	\uplus

	+

	Sum type



	ℕ

	U+2115

	\mathbb{N}

	N

	Natural numbers



	ℤ

	U+2124

	\mathbb{Z}

	Z

	Integers



	𝔽

	U+1D53D

	\mathbb{F}

	F

	Fractional numbers



	ℚ

	U+211A

	\mathbb{Q}

	Q

	Rational numbers



	λ

	U+033B

	\lambda

	\

	Anonymous function



	■

	U+25A0

	\blacksquare

	unit

	Unit value
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Quick Tutorial for experienced functional programmers

Disco is a small yet expressive, pure functional programming language
designed especially to be used in the context of a discrete
mathematics course.  Right now it is in a rough prototype stage; this
tutorial is only useful for developers who already have some knowledge
of functional programming.



	Getting started

	Arithmetic

	Types

	Disco files and the disco REPL

	Logic

	Structural types

	Functions

	Case expressions

	Lists

	Polymorphism

	Type Definitions

	Containers

	Properties
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Getting started

After you have been added as a collaborator to the disco github
repository [https://github.com/disco-lang/disco], get the source code via SSH:

git clone git@github.com:disco-lang/disco.git





If you are not a collaborator on the repository you can also get the
source code via HTTPS:

git clone https://github.com/disco-lang/disco.git





Make sure you have the stack tool [https://docs.haskellstack.org/en/stable/README/] installed.  Then navigate to
the root directory of the disco repository, and execute

stack setup
stack build --fast





(This may take quite a while the first time, while stack downloads
and builds all the dependencies of disco.)

After building disco with stack build, to run the disco REPL
(Read-Eval-Print Loop), type stack exec disco at a command prompt.
You should see a disco prompt that looks like this:

Disco>





To run the test suite, you can execute

stack test --fast





See the build script in the root of the repository for an example of
additional arguments you may wish to pass to stack build for a tight
edit-compile-test loop while working on the code.
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Arithmetic

As a computational platform for learning discrete mathematics, at the
core of disco is of course the ability to compute with numbers.
However, unlike many other languages, disco does not support
real (aka floating-point) numbers at all—they are not typically
needed for discrete mathematics, and omitting them simplifies the
language quite a bit.   To compensate, however, disco has
sophisticated built-in support for rational numbers.


Basic arithmetic

To start out, you can use disco as a simple calculator.  For
example, try entering the following expressions, or others like them,
at the Disco> prompt:


	2 + 5


	5 - 8


	5 * (-2)


	(1 + 2)(3 + 4)


	2 ^ 5


	2 ^ 5000


	4 .- 2


	2 .- 4




The last two expressions use the saturating subtraction operator, .-, which
takes two numeric operands, \(a\) and \(b\), and returns \(a - b\)
if \(a > b\), and \(0\) otherwise. Note that unlike regular subtraction,
the result of a saturating subtraction will always be a natural number.

Also notice that it is not always necessary to write * for
multiplication: as is standard mathematical notation, we may often
omit it, as in (1 + 2)(3 + 4), which means the same as (1 + 2) *
(3 + 4). (For precise details on when the asterisk may be omitted,
see the discussion in the section on functions.)  Notice also that
integers in disco may be arbitrarily large.

Now try these:


	3/7 + 2/5


	2 ^ (-5)




The results may come as a bit of a surprise if you are already used to
other languages such as Java or Python, which would yield a
floating-point (i.e. real) number; as mentioned before, disco does
not support floating-point numbers. However, rational numbers can
still be entered using decimal notation.  Try these expressions as
well:


	2.3 + 1.6


	1/5.0


	1/7.0




Disco automatically picks either fractional or decimal notation for
the output, depending on whether any values with decimal points were
used in the input (for example, compare 1/5 and 1/5.0, or
1.0/5).  Note that 1/7.0 results in 0.[142857];
can you figure out what the brackets indicate?

The standard floor and ceiling operations are built-in:

Disco> floor (17/3)
5
Disco> ceiling (17/3)
6





Just for fun, disco also supports standard mathematical notation for
these operations via Unicode characters:

Disco> ⌊ 17/3 ⌋
5
Disco> ⌈ 17/3 ⌉
6





Integer division, which rounds down to the nearest integer, can be
expressed using //:

Disco> 5 // 2
2
Disco> (-5) // 2
-3





x // y is always equivalent to floor (x/y), but is provided as
a separate operator for convenience.

The counterpart to integer division is mod, which gives the
remainder when the first number is divided by the second:

Disco> 5 mod 2
2
Disco> (2^32) mod 7
4
Disco> (2^32) % 7





The % operator may also be used as a synonym for mod.

Finally, the abs function is provided for computing absolute
value:

Disco> abs 5
5
Disco> abs (-5)
5







Advanced arithmetic

Disco also provides a few more advanced arithmetic operators which you
might not find built in to other languages.


	The divides operator can be used to test whether one number
evenly divides another.  Try evaluating these expressions:



	2 divides 20


	2 divides 21


	(-2) divides 20


	2 divides (-20)


	7 divides (2^32 - 4)


	(1/2) divides (3/2)


	(1/5) divides (3/2)


	1 divides 10


	0 divides 10


	10 divides 0


	0 divides 0




The last three expressions may be surprising, but follow directly
from the definition: a divides b is true if there is an
integer k such that a*k = b.  For example, there is no
k such that 0*k = 10, so 0 divides 10 is false.

Note that a vertical line is often used to denote divisibility, as
in \(3 \mid 21\), but disco does not support this notation, since
the vertical line is used for other things (and besides, it is
typically not a good idea to use a visually symmetric operator for
a nonsymmetric relation).






	The choose operator can be used to compute binomial
coefficients.  For example, 5 choose 2 is the number of ways to
select two things out of five.


	The factorial function is available via standard mathematical
notation:


Disco> 20!
2432902008176640000










	A square root (sqrt) function is provided which rounds the
result down to the nearest integer (remember that disco does not
support arbitrary real numbers).


Disco> sqrt (299^2 + 1)
299
Disco> sqrt (299^2 .- 1)
298
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Types

Every value in disco has a type.  Types play a central role in the
language, and help guide and constrain programs.  All the types in a
program must match correctly (i.e. the program must typecheck)
before it can be run.  The type system has for the most part been
designed to correspond to common mathematical practice, so if you are
used to type systems in other programming languages (even other
functional languages) you may be in for a surprise or two.

Disco can often infer the type of an expression.  To find out what
type disco has inferred for a given expression, you can use the
:type command.  For example:

Disco> :type 3
3 : ℕ
Disco> :type 2/3
2 / 3 : 𝔽
Disco> :type [1,2,5]
[1, 2, 5] : List ℕ





The colon in 3 : ℕ can be read “has type” or “is a”, as in “three is
a natural number”.  A colon can also be used to give an explicit type
to an expression, for example, when you want to specify a type other
than what disco would infer.  For example:

Disco> :type 3 + 5
3 + 5 : ℕ
Disco> :type (3 : Integer) + 5
(3 : ℤ) + 5 : ℤ





The above example shows that normally, disco infers the type of 3 +
5 to be a natural number, but we can force the 3 to be treated as
an Integer, which in turn forces the whole expression to be inferred
as an integer.


Primitive numeric types

Disco has four built-in primitive numeric types: natural numbers,
integers, fractions (i.e. nonnegative rationals), and rationals.


	The type of natural numbers, written Natural, Nat, N, or ℕ,
includes the counting numbers \(0, 1, 2, \dots\).


	The type of integers, written Integer, Int, Z, or ℤ,
includes the natural numbers as well as their negatives.


	The type of fractions (i.e. nonnegative rationals), written
Fractional, Frac, F, or 𝔽, includes all ratios of
the form \(a/b\) where \(a\) and \(b\) are natural
numbers, with \(b \neq 0\).


	The type of rational numbers, written Rational, Q or ℚ,
includes all ratios of integers.




In mathematics, it is typically not so common to think of the
nonnegative rationals \(\mathbb{F}\) as a separate set by
themselves; but this is mostly for historical reasons and because of
the way the development of rational numbers is usually presented.  The
natural numbers support addition and multiplication.  Extending them
to support subtraction yields the integers; then, extending these
again to support division yields the rationals.  However, what if we
do these extensions in the opposite order?  Extending the natural
numbers to support division results in the positive rational numbers;
then extending these with subtraction again yields the rationals.  All
told, the relationship between these four types forms a diamond-shaped
lattice:

  Q
 / \
Z   F
 \ /
  N





Each type is a subset of the type or types above it.  Going northwest
in this diagram (\(\mathbb{N} \to \mathbb{Z}\) or
\(\mathbb{F} \to \mathbb{Q}\)) corresponds to allowing negatives,
that is, subtraction; going northeast (\(\mathbb{N} \to
\mathbb{F}\) or \(\mathbb{Z} \to \mathbb{Q}\)) corresponds to
allowing reciprocals, that is, division.

Try evaluating each of the following expressions at the disco prompt,
and also request their inferred type with the :type command.  What
type does disco infer for each? Why?


	1 + 2


	3 * 7


	1 - 2


	1 / 2


	(1 - 2) / 3




Going southeast in the lattice (getting rid of negatives) is
accomplished with the absolute value function abs.  Going
southwest (getting rid of fractions) is accomplished with floor
and ceiling.

Note that disco supports subtyping, that is, values of type S can
be automatically “upgraded” to another type T as long as S is
a “subtype” (think: subset) of T.  For example, a natural number
can be automatically upgraded to an integer.

Disco> (-1 : Z) + (3 : N)
2
Disco> :type (-1 : Z) + (3: N)
(-1 : ℤ) + (3 : ℕ) : ℤ





In the above example, the natural number 3 is automatically
upgraded to an integer so that it can be added to -1.  When we
discuss functions later, we will see that this principle extends to
function arguments as well: for example, if a function is expecting an
integer as input, it is acceptable to give it a natural number, since
the natural number can be upgraded to an integer.



Other types

There are many other types built into disco as well—Bool, Void,
Unit, List, product, and sum types, to name a few.  These will be
covered throughout the rest of the tutorial in appropriate places.
For now, try executing these commands and see if you can guess what is
going on:


	:type false


	:type unit


	:type [1, 2, 3]


	:type [1, 2, -3]


	:type [1, 2, -3, 4/5]


	:type [[1,2], [3,4,5]]


	:type (1, true)


	:type left(3)
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Disco files and the disco REPL

For anything beyond simple one-off calculations that can be entered at
the disco prompt, disco definitions may be stored in a file which can
be loaded into the REPL.


Disco files

Disco files typically end in .disco.
Here is a simple example:


example/basics.disco

approx_pi : Rational
approx_pi = 22/7

increment : N -> N
increment(n) = n + 1







This file contains definitions for approx_pi and increment.
Each definition consists of a type signature of the form <name> :
<type>, followed by an equality of the form <name> =
<expression>.  Both parts of a definition are required; in
particular, if you omit a type signature, disco will complain that the
name is not defined.  The example file shown above contains two
definitions: approx_pi is defined to be the Rational number
\(22/7\), and increment is defined to be the function which
outputs one more than its natural number input. (Functions and the
syntax for defining them will be covered in much more detail in an
upcoming section of the tutorial.)

The order of definitions in a .disco file does not matter;
each definition may refer to any other definition in the whole file.

To load the definitions in a file into the disco REPL, you can use the
:load command.  After successfully loading a file, all the names
defined in the file are available for use; the :names command can
be used to list all the available names.  For example:

Disco> :load example/basics.disco
Loading example/basics.disco...
Loaded.
Disco> :names
approx_pi : ℚ
increment : ℕ → ℕ
Disco> approx_pi
22/7
Disco> increment(3)
4
Disco> :type increment
increment : ℕ → ℕ
Disco> approx_pi + increment(17)
148/7





(If you want to follow along, note that the above interaction assumes
that the disco REPL was run from the docs/tutorial subdirectory.)



Comments and documentation

Comments in disco have a similar syntax to Haskell, with the exception
that only single-line comments are supported, and not multi-line
comments.  In particular, two consecutive hyphens -- will cause
disco to ignore everything until the next newline character.


example/comment.disco

-- This is a comment
approx_pi : Rational
approx_pi = 22/7   -- an OK approximation

-- The following function is very complicated
-- and took about three weeks to write.
-- Don't laugh.
increment : N -> N
increment(n) = n + 1 -- one more than the input







Comments can be placed anywhere and are literally ignored by disco.
In many cases, however, the purpose of a comment is to provide
documentation for a function.  In this case, disco supports special
syntax for documentation, which must be placed before the type
signature of a definition.  Each line of documentation must begin with
||| (three vertical bars).


example/doc.disco

||| A reasonable approximation of pi.
approx_pi : Rational
approx_pi = 22/7   -- an OK approximation

||| Take a natural number as input, and return the natural
||| number which is one greater.
|||
||| Should not be used while operating heavy machinery.
-- This comment will be ignored.
increment : N -> N
increment(n) = n + 1

fizz : N
fizz = 1







When this file is loaded into the disco REPL, we can use the :doc
command to see the documentation associated with each name.

Disco> :load example/doc.disco
Loading example/doc.disco...
Loaded.
Disco> :doc approx_pi
approx_pi : ℚ

A reasonable approximation of pi.

Disco> :doc increment
increment : ℕ → ℕ

Take a natural number as input, and return the natural
number which is one greater.

Should not be used while operating heavy machinery.

Disco> :doc fizz
fizz : ℕ





Since fizz does not have any associated documentation, the
:doc command simply shows its type.



Other REPL commands

The disco REPL has a few other commands which are useful for disco
developers.


	:parse shows the fully parsed form of an expression.


Disco> :parse 2 + [3,4 : Int]
TBin_ () Add (TNat_ () 2) (TContainer_ () ListContainer [(TNat_ () 3,Nothing),(TAscr_ () (TNat_ () 4) (Forall (<[]> TyAtom (ABase Z))),Nothing)] Nothing)










	:pretty shows the pretty-printed form of a term (without
typechecking it).


Disco> :pretty 2 + [3,4:Int]
2 + [3, (4 : ℤ)]










	:desugar shows the desugared term corresponding to
an expression.


Disco> :desugar [3,4]
3 :: 4 :: []










	:compile shows the compiled core language term corresponding to
an expression.


Disco> :compile [3 - 4]
CCons 1 [CApp (CConst OAdd) [(Lazy,CCons 0 [CNum Fraction (3 % 1),CApp (CConst ONeg) [(Strict,CNum Fraction (4 % 1))]])],CCons 0 []]
















          

      

      

    

  

  
    

    Logic
    

    
 
  

    
      
          
            
  
Logic


Booleans

The type of booleans, written Bool or Boolean, represents
logical truth and falsehood.  The two values of this type are written
true and false. (For convenience True and False also
work.)


	Logical AND can be written and, &&, or ∧ (note that ∧
is U+2227 LOGICAL AND, not a caret symbol ^, which is
reserved for exponentiation).


	Logical OR  is written or, ||, or ∨ (U+2228 LOGICAL OR).


	Logical negation (NOT) is written not or ¬ (U+00AC NOT
SIGN).


	Logical implication is written implies or ==>.




Disco> true and false
false
Disco> true || false
true
Disco> not (true ∧ true)
false
Disco> ¬ (false or false or false or true)
false
Disco> true implies false
false
Disco> false implies true
true







Equality testing

If you have two disco values of the same type, in almost all cases you
can compare them to see whether they are equal using ==, resulting
in a Bool value.

Disco> 2 == 5
false
Disco> 3 * 7 == 2*10 + 1
true
Disco> (3/5)^2 + (4/5)^2 == 1
true
Disco> false == False
true





The /= operator tests whether two values are not equal; it is
just the logical negation of ==.



Comparison

Again, in almost all cases values can be compared to see which is less
or greater, using operators <, <=, >, or >=.

Disco> 2 < 5
true
Disco> false < true
true





Comparisons can also be chained; the result is obtained by comparing
each pair of values according to the comparison between them, and
taking the logical AND of all the results. For example:

Disco> 1 < 3 < 8 < 99
true
Disco> 2.2 < 5.9 > 3.7 < 8.8 > 1.0 < 9
true
Disco> x : Int
Disco> x = 5
Disco> 2 < x < 10
true
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Structural types

In addition to the primitive types covered so far, disco also has sum
and product types which can be used to build up more complex
structures out of simpler ones.


Product types

The product of two types, written using an asterisk * or Unicode
times symbol × (U+00d7 MULTIPLICATION SIGN), is a type whose
values are ordered pairs of values of the component types.  Pairs are
written using standard ordered pair notation.


example/pair.disco

pair1 : N * Q
pair1 = (3, -5/6)

pair2 : Z × Bool
pair2 = (17 + 22, (3,5) < (4,2))

pair3 : Bool * (Bool * Bool)
pair3 = (true, (false, true))

pair4 : Bool * Bool * Bool
pair4 = (true, false, true)







pair1 in the example above has type N * Q, that is, the type
of pairs of a natural number and a rational number; it is defined to
be the pair containing 3 and -5/6.  pair2 has type Z ×
Bool (using the alternate syntax × in place of *), and
contains two values: \(17 + 22\), and the result of
asking whether \((3,5) < (4,2)\).

Disco> pair2
(39, true)





Pairs are compared lexicographically, which intuitively means that the
first component is most important, the second component breaks ties in
the first component, and so on.  For example, \((a,b) < (c,d)\) if
either \(a < c\) (in which case \(b\) and \(d\) don’t
matter) or if \(a = c\) and \(b < d\).  This is why (3,5) <
(4,2) evaluates to true. Of course, two pairs are equal exactly
when their first elements are equal and their second elements are
equal.

pair3 shows that pairs can be nested: it is a pair whose second
component is also a pair.  pair4 looks like an ordered triple, but
in fact we can check that pair3 and pair4 are equal!

Disco> pair3 == pair4
true





Really, pair4 is just syntax sugar for pair3.  In general:


	The type X * Y * Z is interpreted as X * (Y * Z).


	The tuple (x,y,z) is interpreted as (x,(y,z)).




This continues recursively, so, for example, A * B * C * D * E
means A * (B * (C * (D * E))).  Put another way, disco really only
has pairs, but appears to support arbitrarily large tuples by encoding
them as right-nested pairs.

If you want left-nested pairs you can use explicit parentheses: for
example, (Bool * Bool) * Bool is not the same as Bool * Bool *
Bool, and has values such as ((false, true), true).



Sum types

If X and Y are types, their sum, written X + Y (or X ⊎
Y, using U+228e MULTISET UNION), is the disjoint union of X
and Y.  That is, values of type X + Y are either values of
X or values of Y, along with a “tag” so that we know which it
is.  The possible tags are left and right (to indicate the
type on the left or right of the +).  For example:


example/sum.disco

sum1 : N + Bool
sum1 = left(3)

sum2 : N + Bool
sum2 = right(false)

sum3 : N + N + N
sum3 = right(right(3))







sum1 and sum2 have the same type, namely, N + Bool; values
of this type consist of either a natural number or a boolean.
sum1 contains a natural number, tagged with left; sum2
contains a boolean tagged with right.

Notice that X + X is a different type than X, because we get
two distinct copies of all the values in X, some tagged with
left and some with right. This is why we call a sum type a
disjoint union.

Iterated sum types, as in sum3, are handled in exactly the same
way as iterated product types: N + N + N is really syntax sugar
for N + (N + N).  sum3 therefore begins with a right tag,
to show that it contains a value of the right-hand type, namely, N +
N; this value in turn consists of another right tag along with a
value of type N.  Other values of the same type N + N + N
include right(left(6)) and left(5).



Unit and Void types

Disco has two other special built-in types which are rarely useful on
their own, but often play an important role in describing other types.


	The type Unit has just a single value, called unit or ■.


Disco> :type unit
■ : Unit










	The type Void has no values.






Counting and enumerating types

For any type which has only a finite number of values, disco can count
how many values there are, using the count operator, or list them
using enumerate (we will learn more about lists later in the
tutorial).

Disco> count ((Bool * (Bool + Bool)) + Bool)
right 10
Disco> enumerate ((Bool * (Bool + Bool)) + Bool)
[left (false, left false), left (false, left true), left (false, right false),
 left (false, right true), left (true, left false), left (true, left true),
 left (true, right false), left (true, right true), right false, right true]
Disco> enumerate (Bool * Bool * Bool)
[(false, false, false), (false, false, true), (false, true, false), (false, true, true),
 (true, false, false), (true, false, true), (true, true, false), (true, true, true)]
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Functions

The type of functions with input X and output Y is written X
-> Y.  Some basic examples of function definitions are shown below.


example/function.disco

f : N -> N
f(x) = x + 7

g : Z -> Bool
g(n) = (n - 3) > 7

factorial : N -> N
factorial(0) = 1
factorial(n) = n * factorial(n .- 1)








	The function f takes a natural number as input, and returns the
natural number which is 7 greater.  Notice that f is defined
using the syntax f(x) = ....  In fact, the basic syntax for
function arguments is juxtaposition, just as in Haskell; the syntax
f x = ... would work as well.  Stylistically, however, f(x) =
... is to be preferred, since it matches standard mathematical
notation.


	The function g takes an integer n as input, and returns a
boolean indicating whether n - 3 is greater than 7.  Note that
this function cannot be given the type N -> Bool, since it uses
subtraction.


	The recursive function factorial computes the factorial of its
input.  Top-level functions such as factorial are allowed to be
recursive.  Notice also that factorial is defined by two cases,
which are matched in order from top to bottom, just as in Haskell.




Functions can be given inputs using the same syntax:

Disco> f(2^5)
39
Disco> g(-5)
false
Disco> factorial(5 + 6)
39916800





“Multi-argument functions” can be written as functions which take a
product type as input. (This is again a stylistic choice: disco
certainly supports curried functions as well.  But in either case,
disco fundamentally supports only one-argument functions.)  For
example:


example/multi-arg-functions.disco

gcd : N * N -> N
gcd(a,0) = a
gcd(a,b) = gcd(b, a mod b)

discrim : Q * Q * Q -> Q
discrim(a,b,c) = b^2 - 4*a*c

manhattan : (Q*Q) * (Q*Q) -> Q
manhattan ((x1,y1), (x2,y2)) = abs (x1-x2) + abs (y1-y2)







All of these examples are in fact pattern-matching on their
arguments, although this is most noticeable with the last example,
which decomposes its input into a pair of pairs and gives a name to
each component.

Functions in disco are first-class, and can be provided as input to
another function or output from a function, stored in data structures,
etc.  For example, here is how one could write a higher-order
function to take a function on natural numbers and produce a new
function which iterates the original function three times:


example/higher-order.disco

thrice : (N -> N) -> (N -> N)
thrice(f)(n) = f(f(f(n)))








Anonymous functions

The syntax for an anonymous function in disco consists of a lambda
(either a backslash or an actual λ) followed by a pattern, a
period, and an arbitrary disco expression (the body).

The pattern can be a single variable name or a more complex
pattern. Note that patterns can also contain type annotations.  Unlike
in, say, Haskell, there is no special syntactic sugar for curried
multi-argument functions; one can just write nested lambdas.

Here are a few examples to illustrate the possibilities:

Disco> thrice(\x. x*2)(1)
8
Disco> thrice(\z:Nat. z^2 + 2z + 1)(7)
17859076
Disco> (\(x,y). x + y) (3,2)
5
Disco> (\x:N. \y:Q. x > y) 5 (9/2)
true







Let expressions

Let expressions are a mechanism for defining new variables for local
use within an expression.  For example, 3 + (let y = 2 in y + y)
evaluates to 7: the expression y + y is evaluated in a context
where y is defined to be 2, and the result is then added to
3.  The simplest syntax for a let expression, as in this example,
is let <variable> = <expression1> in <expression2>.  The value of
the let expression is the value of <expression2>, which may
contain occurrences of the <variable>; any such occurrences will
take on the value of <expression1>.

More generally:


	A let may have multiple variables defined before in,
separated by commas.


	Each variable may optionally have a type annotation.


	The definitions of later variables may refer to previously defined
variables.


	However, the definition of a variable in a let may not refer to
itself; only top-level definitions may be recursive.




Here is a (somewhat contrived) example which demonstrates all these
features:


example/let.disco

f : Nat -> List(Nat)
f n =
  let x : Nat = n//2,
      y : Nat = x + 3,
      z : List(Nat) = [3,x,y]
  in  n :: z







An important thing to note is that a given definition in a let
expression will only ever be evaluated (at most) once, even if the
variable is used multiple times.  let expressions are thus a way
for the programmer to ensure that the result of some computation is
shared. let x = e in f x x and f e e will always yield the
same result, but the former might be more efficient, if e is
expensive to calculate.



Disambiguating function application and multiplication

As previously mentioned, the fundamental syntax for applying a
function to an argument is juxtaposition, that is, simply putting
the function next to its argument (with a space in between if
necessary).

However, disco also allows multiplication to be written in this way.
How can it tell the difference? Given an expression of the form X
Y (where X and Y may themselves be complex expressions),
disco uses simple syntactic rules to distinguish between
multiplication and function application.  In particular, note that the
types of X and Y do not enter into it at all (it would
greatly complicate matters if parsing and typechecking had to be
interleaved—even though this is what human mathematicians do in
their heads; see the discussion below).

To decide whether X Y is function application or multiplication,
disco looks only at the syntax of X; X Y is multiplication if
and only if X is a multiplicative term, and function application
otherwise.  A multiplicative term is one that looks like either a
natural number literal, or a unary or binary operation (possibly in
parentheses).  For example, 3, (-2), and (x + 5) are all
multiplicative terms, so 3x, (-2)x, and (x + 5)x all get
parsed as multiplication.  On the other hand, an expression like (x
y) is always parsed as function application, even if x and y both
turn out to have numeric types; a bare variable like x does not count
as a multiplicative term.  Likewise, (x y) z is parsed as function
application, since (x y) is not a multiplicative term.


Note

You may enjoy reflecting on how a human mathematician does this
disambiguation.  In fact, they are doing something much more
sophisticated than disco, implicitly using information about types
and social conventions regarding variable names in addition to
syntactic cues.  For example, consider \(x(y + 3)\) versus \(f(y +
3)\). Most mathematicians would unconsciously interpret the first
as multiplication and the second as function application, due to
standard conventions about the use of variable names \(x\) and
\(f\).  On the other hand, in the sentence “Let \(x\) be the function
which doubles an integer, and consider \(v = x(y+3)\)”, any
mathematician would have no trouble identifying this use of
\(x(y+3)\) as function application, although they might also
rightly complain that \(x\) is a strange choice for the name of
a function.
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Case expressions

Fundamentally, the only construct available in disco which allows
choosing between multiple alternatives is case analysis using a case
expression.  (The other is multi-clause functions defined via
pattern-matching, but in fact that is really only syntax sugar for a
case expression.)

The syntax of case expressions is inspired by mathematical notation
such as


\[\begin{split}f(x) = \begin{cases}
         x+2           & x < 0 \\
         x^2 - 3x + 2  & 0 \leq x < 10 \\
         5 - x         & \text{otherwise}
       \end{cases}\end{split}\]

Here is how one would write a corresponding definition in disco:


example/case.disco

f : Z -> Z
f(x) = {? x + 2           if x < 0,
          x^2 - 3x + 2    if 0 <= x < 10,
          5 - x           otherwise
       ?}







The entire expression is surrounded by {? ... ?}; the curly braces
are reminiscent of the big brace following \(f(x) = \dots\) in the
standard mathematical notation, but we don’t want to use plain curly
braces (since those will be used for sets), so question marks are
added (which are supposed to be reminiscent of the fact that case
expressions are about asking questions).


Case syntax and semantics

More formally, the syntax of a case expression consists of one or more
branches, separated by commas, enclosed in {? ... ?}.
(Whitespace, indentation, etc. formally does not matter, though
something like the style shown in the example above is encouraged.)

Each branch consists of an arbitrary expression followed by zero or
more guards.  When a case expression is evaluated, each branch is
tried in turn; the first branch which has all its guards succeed is
chosen, and the value of its expression becomes the value of the
entire case expression.  In the example above, this means that first
x < 0 is evaluated; if it is true then x + 2 is chosen as the
value of the entire case expression (and the rest of the branches are
ignored).  Otherwise, 0 <= x < 10 is evaluated; and so on.

There are three types of guards:


	A boolean guard has the form if <expr> or when <expr>, where <expr> is an
expression of type Bool.  It succeeds if the expression
evaluates to true.  There is no difference between if and
when; they are simply synonyms.


	A pattern guard has the form if <expr> is <pattern>, or when <expr> is <pattern>.  It succeeds
if the expression <expr> matches the pattern <pattern>.


	For convenience, the special guard otherwise is equivalent
to if true.




Here is an example using both boolean and pattern guards:


example/case-pattern.disco

g : Z*Z -> Z
g(p) = {? 0      when p is (3,_),
          x + y  when p is (x,y) when x > 5 or y > 20,
          -100   otherwise
       ?}







Here is the result of evaluating g on a few example inputs:

Disco> g(3,9)
0
Disco> g(4,3)
-100
Disco> g(16,15)
31





When a pattern containing variables matches, the variables are bound
to the corresponding values, and are in scope in both the branch
expression as well as any subsequent guards.  In the example above,
when the pattern (x,y) matches p, both x and y may be
used in the branch expression (x + y in this case) as well as in
the second guard if x > 5 or y > 20.  That is, the guards in this
branch will only succeed if p is of the form (x,y) and either
x > 5 or y > 20, in which case the value of the whole case
expression becomes the value of x + y; for example, g(16,15) =
31.


Warning

Be careful not to get a Boolean guard using == confused with a
pattern guard using is. The difference is in how variables are
handled: boolean guards can only use existing variables; pattern
guards create new variables.  For example, ... when p is (x,y)
matches a tuple p and gives the names x and y to the
components.  On the other hand, ... if p == (x,y) will probably
complain that x and y are undefined—unless x and
y are already defined elsewhere, in which case this will simply
check that p is exactly equal to the value (x,y).  Use a
boolean guard when you want to check some condition; use a pattern
guard when you want to take a value apart or see what it looks
like.
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Lists

Disco defines a type of inductive, singly-linked lists, very similar
to lists in Haskell.


Basic lists

All the elements of a list must be the same type, and the type of a
list with elements of type T is written List(T).

The basic syntax for constructing and pattern-matching on lists is
almost exactly the same as in Haskell, with the one difference that
the single colon (type of) and double colon (cons) have been switched
from Haskell.


example/list.disco

emptyList : List(Bool)
emptyList = []

nums : List(N)
nums = [1, 3, 4, 6]

nums2 : List(N)
nums2 = 1 :: 3 :: 4 :: 6 :: []

  -- nums and nums2 are equal

nested : List(List(Q))
nested = [1, 5/2, -8] :: [[2, 4], [], [1/2]]

sum : List(N) -> N
sum []        = 0
sum (n :: ns) = n + sum ns









List comprehensions

Disco has list comprehensions which are also similar to Haskell’s.  A
list comprehension is enclosed in square brackets, and consists of an
expression, followed by a vertical bar, followed by zero or more
qualifiers, [ <expr> | <qual>* ].

A qualifier is one of:


	A binding qualifier of the form x in <expr>, where x is
a variable and <expr> is any expression with a list type.  x
will take on each of the items of the list in turn.


	A guard qualifier, which is an expression with a boolean type.  It
acts to filter out any bindings which cause the expression to
evaluate to false.




For example, comp1 below is a (rather contrived) function on two
lists which results in all possible sums of two even numbers taken
from the lists which add to at least 50.  pythagTriples is a list
of all Pythagoren triples with all three components at
most 100. (There are much more efficient ways to compute Pythagorean
triples, but never mind.)


example/comprehension.disco

comp1 : List(N) -> List(N) -> List(N)
comp1 xs ys = [ x + y | x in xs, 2 divides x, y in ys, 2 divides y, x + y >= 50 ]

pythagTriples : List (N*N*N)
pythagTriples = [ (a,b,c)
  | a in [1 .. 20]
  , b in [1 .. 20]
  , c in [1 .. 20]
  , a^2 + b^2 == c^2
  ]








Note

The biggest difference between list comprehensions in disco and
Haskell is that Haskell allows pattern bindings, e.g.  Just x <-
xs, which keep only elements from the list which match the
pattern.  At the moment, disco only allows variables on the
left-hand side of a binding qualifier.  There is no reason in
principle disco can’t support binding qualifiers with patterns, it
just isn’t a big priority and hasn’t been implemented yet.
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Polymorphism

Disco includes support for parametric polymorphism, with syntax
similar to Haskell.  For example, here is how we could write a
polymorphic list map function (although this is actually built in
to Disco; see the next section on containers).


example/poly.disco

maplist : (a -> b) -> List(a) -> List(b)
maplist _ [] = []
maplist f (a :: as) = f a :: (maplist f as)







Disco can also infer polymorphic types.  For example:

Disco> :type \x,y. x
λx, y. x : a1 → a → a1
Disco> :load example/poly.disco
Loading poly.disco...
Loaded.
Disco> :type maplist (\x.x)
maplist (λx. x) : List a → List a
Disco> :type maplist (\x.x) [1, 2, 3]
maplist(λx. x)([1, 2, 3]) : List ℕ





However, although Disco has an internal notion of type qualifiers
(like Haskell type classes), these will never show up in inferred
types.  For example:

Disco> :type \x,y. x + y
λx, y. x + y : ℕ → ℕ → ℕ





Internally, Disco is happy to use \x,y. x + y at any type which
supports addition, but when forced to infer a concrete type for it, it
simply picks a suitable monomorphic instantiation.  However, the
following example shows that it can in fact be used on, say, rational
numbers:

Disco> :type (\x,y. x + y) (3/2) (-5)
(λx, y. x + y)(3 / 2)(-5) : ℚ
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Type Definitions

The type keyword can be used to conveniently declare aliases for
types.  For example, consider the following function which takes a
list of natural number triplets and returns the sum of all the
triplets in the list:


example/tydefs.disco

sumTripletList : List (N * N * N) -> N
sumTripletList [] = 0
sumTripletList ((n1, n2, n3) :: rest) = (n1 + n2 + n3 + (sumTripletList rest))







Disco> sumTripletList [(1,2,3), (4,5,6)]
21





Let’s write the following type definition:

type NatTriple = N * N * N





The type NatTriple is defined as a 3-tuple containing three values
of type N.  Note that in Disco, all type names must begin with a
capital letter. Now we can rewrite our type declaration for
sumTripletList as follows:

sumTripletList : List(NatTriple) -> N






Recursive type definitions

However, type definitions are in fact much more powerful.  Disco
has no special syntax for declaring algebraic data types as in
Haskell, but unlike Haskell, type definitions in Disco can be
recursive.  Thus, we can build recursive algebraic data types
directly.  For example, we can define a type of binary trees with
values of type N at nodes as follows:


example/tydefs.disco

type Tree = Unit + (N * Tree * Tree)







Here, we see that a Tree can either be a leaf, or a a triplet
containing a natural number value of the root as the first element,
and the left and right subtrees of type Tree as the second and
third elements, respectively.

Given this definition of Tree, here is how we would write a
function which takes a Tree and returns the sum of all its node
values.


example/tydefs.disco

sumTree : Tree -> N
sumTree (left _) = 0
sumTree (right (n, l, r)) = n + sumTree(l) + sumTree(r)









Parameterized type definitions

Type definitions can also be parameterized. For example, we can make
the Tree type polymorphic:


example/tydefs-poly.disco

import list

type Tree(a) = Unit + (a * Tree(a) * Tree(a))

treeFold : b * (a * b * b -> b) * Tree(a) -> b
treeFold (z, f, left(unit)) = z
treeFold (z, f, right (a, l, r)) = f(a, treeFold(z,f,l), treeFold(z,f,r))

sumTree : Tree(Nat) -> Nat
sumTree(t) = treeFold(0, \(a,l,r). a+l+r, t)

flattenTree : Tree(a) -> List(a)
flattenTree(t) = treeFold([], \(a,l,r). append(l, append([a], r)), t)







Disco> :load example/tydefs-poly.disco
Disco> leaf = left(unit)
Disco> t = right (1, right (3, leaf, leaf), right (5, leaf, leaf)) : Tree N
Disco> sumTree(t)
9
Disco> flattenTree(t)
[3, 1, 5]







Cyclic type definitions

There is only one restriction on recursive type definitions,
namely, they are not allowed to be cyclic, i.e. unguardedly
recursive.  A type definition is cyclic if the following two
conditions hold:


	Repeated expansions of the type definition yield solely type definitions.


	The same type definition is encountered twice during repeated expansion.




For example:

-- Foo is not allowed because it expands to itself.
type Foo = Foo
-- Bar is not allowed: it expands to Baz which expands to Bar.
type Bar = Baz
type Baz = Bar

-- Pair is OK (though rather useless) because it expands to a
-- top-level type former (product) which is not a type definition.
type Pair = Pair * Pair
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Containers

Coming soon!

Topics to cover:


	warning: under construction


	
	lists, bags, and sets

	
	literal syntax


	conversion functions










	
	built-in functions:

	
	map


	reduce


	filter


	join


	union, intersection, etc.


	merge


	size










	comprehensions
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Properties

Each disco definition may have any number of associated properties,
mathematical claims about the behavior of the definition which can be
automatically verified by disco.  Properties begin with !!!, must
occur just before their associated definition, and may be arbitrarily
interleaved with documentation lines beginning with |||.


Unit tests

The simplest kind of property is just an expression of type Bool,
which essentially functions as a unit test.  When loading a file,
disco will check that all such properties evaluate to true, and
present an error message if any do not.


example/unit-test.disco

!!! gcd(7,6)   == 1
!!! gcd(12,18) == 6
!!! gcd(0,0)   == 0

gcd : N * N -> N
gcd(a,0) = a
gcd(a,b) = gcd(b, a mod b)







When we load this file, disco reports that it successfully ran the
tests associated with gcd:

Disco> :load example/unit-test.disco
Loading example/unit-test.disco...
Running tests...
  gcd: OK
Loaded.





On the other hand, if we change the first property to !!! gcd(7,6) =
2 and load the file again, we get an error:

Disco> :load example/unit-test.disco
Loading example/unit-test.disco...
Running tests...
  gcd:
  - Test result mismatch for: gcd (7, 6) = 2
    - Expected: 2
    - But got:  1
Loaded.







Quantified properties

More generally, properties can contain universally quantified
variables.  The syntax for a universally quantified property is as
follows:


	the word forall (or the Unicode symbol ∀);


	one or more comma-separated bindings, each consisting of a
variable name, a colon, and a type;


	a period;


	and an arbitrary expression, which should have type Bool and
which may refer to the variables bound by the forall.




Such quantified properties have the obvious logical interpretation:
they hold only if the given expression evaluates to true for all
possible values of the quantified variables.


example/property.disco

!!! ∀ x:Bool. neg (neg x) == x
neg : Bool -> Bool
neg x = not x

!!! ∀p: N + N. plusIsoR (plusIso p) == p
plusIso : N + N -> N
plusIso (left n) = 2n
plusIso (right n) = 2n + 1

!!! ∀n:N. plusIso (plusIsoR n) == n
plusIsoR : N -> N + N
plusIsoR n =
  {? left  (n // 2)   if 2 divides n
   , right (n // 2)   otherwise
  ?}

!!! forall x:N, y:N, z:N.
      f(f(x,y), z) == f(x, f(y,z))

f : N*N -> N
f (x,y) = x + x*y + y







In the example above, the first three properties have a single
quantified variable, and specify respectively that neg is
self-inverse, and plusIso and plusIsoR are inverse.  The last
function has a property with multiple quantified variables, and
specifies that f is associative.  Notice that as in this last
example, properties may extend onto multiple lines, as long as
subsequent lines are indented. Only a single !!! should be used at
the start of each property.

Such properties may be undecidable in general, so disco cannot
automatically prove them.  Instead, it searches for counterexamples.
If the input space is finite and sufficiently small (as in the first
example above, which quantifies over a single boolean), disco will
enumerate all possible inputs and check each one; so in this special
case, disco can actually prove the property by exhaustively checking
all cases.  Otherwise, disco randomly generates a certain number of
inputs (a la QuickCheck) and checks that the property is
satisfied for each.  If a counterexample is found, the property
certainly does not hold, and the counterexample can be printed.  If no
counterexample is found, the property “probably” holds.

For example, consider this function with a property claiming it is
associative:


example/failing/property.disco

!!! forall x:N, y:N, z:N.
      f(f(x,y), z) = f(x, f(y,z))

f : N*N -> N
f (x,y) = x + 2*y







The function is not associative, however, and if we try to load this
file disco quickly finds a counterexample:

Disco> :load example/failing/property.disco
Loading example/failing/property.disco...
Running tests...
  f:
  - Test result mismatch for: ∀ x : ℕ, y : ℕ, z : ℕ. f (f (x, y), z) = f (x, f (y, z))
    - Expected: 5
    - But got:  3
    Counterexample:
      x = 1
      y = 0
      z = 1
Loaded.
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Missing documentation

If you’re seeing this page, it’s because the language reference page
for something has not been written yet!  Try bugging Dr. Yorgey to
write it for you.
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Strings

A string is a sequence of zero or more characters, used
to represent some kind of text or message.  In fact, a string is
really just a list of characters, that is,
a value of type List(Char).

A string can be written using the usual syntax for a list of
characters, that is,

mystr : List(Char)
mystr = ['h', 'e', 'l', 'l', 'o']





However, this is tedious, so Disco also provides special syntax for
strings using double quote marks:

mystr2 : List(Char)
mystr2 = "hello"





In fact, these are exactly the same; the only difference is that
mystr2 uses more convenient syntax:

Disco> mystr == mystr2
true





A string can be empty; the empty string is written "".  Note that
strings can also contain escape sequences. For example,
"don\'t \"go\"\naway".

Note the difference between 'x' and "x":


	'x' is a single character, i.e. a value of type Char.


	"x" is a string, i.e. a value of type List(Char), which
just happens to have only a single character.





print command

When a string value is the result of an expression typed at the REPL,
it will be displayed in double quotes, with escape sequences to
represent special characters.  If you want the contents of the string
to actually be printed on the screen, interpreting special characters
appropriately, you can use the :print command.  For example:

Disco> "don\'t \"go\"\naway"
"don't \"go\"\naway"
Disco> :print "don\'t \"go\"\naway"
don't "go"
away





This can be useful to e.g. produce formatted output with multiple
lines.
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Type definitions

Disco has many built-in types, such as N, Bool, and so on.  We
can also define our own types, using the built-in types as
building blocks.


Type synonyms

The basic syntax for a type definition is

type <Name> = <type>





The <Name> can be whatever name you want, but it must
start with a capital letter.  <type> can be any type expression.

One simple way use this is to define synonyms for existing types. For
example:

type Count = N

f : Bool -> Count
f(True) = 1
f(False) = 0





In the above example, we define Count as a synonym for N; we
may then use Count anywhere we want in place of N.  Perhaps
certain numbers represent some kind of count and we want to help
ourselves document and remember what these numbers mean.

Somewhat more interestingly, we may define new names as abbreviations
for more complex types.  For example:

type Two = N*N
type OneOrTwo = N + Two

ensureTwo : OneOrTwo -> Two
ensureTwo(left(n)) = (n,n)
ensureTwo(right(p)) = p





Here we define OneOrTwo as a synonym for the type N + Two
(which in turn means N + N*N), representing either a single natural number or a pair of
natural numbers.



Recursive type definitions

Defining type names as synonyms for other types is convenient, but
does not fundamentally add anything to the language.  However, type
definitions can also be recursive, that is, types can be defined in
terms of themselves. This, it turns out, does give us a fundamentally
new ability.

As a simple first example, consider the definition of the type
Chain below:

type Chain = Unit + Chain

chain0 : Chain
chain0 = left(unit)

chain1 : Chain
chain1 = right(left(unit))

chain2 : Chain
chain2 = right(right(left(unit)))





Values of type Chain are defined as being either a Unit value
(wrapped in left, like chain0) or another Chain value
(wrapped in right, like chain1 or chain2).  To make a
Chain value, we can therefore keep choosing right as long as
we want, until we finally stop with left(unit).  So values of type
Chain are actually very similar to natural numbers.

As another example, we could define binary trees of rational numbers
like this:

type Tree = Unit + (Tree * Q * Tree)

leaf : Tree
leaf = left(unit)

tree1 : Tree
tree1 = right(leaf, 1/2, leaf)

tree2 : Tree
tree2 = right(tree1, 5/7, leaf)







Parameterized type definitions

It is also possible to create type definitions which have one or more
type parameters.  Type parameters are always written in parentheses.
For example,

type Maybe(a) = Unit + a

type Tree(a) = Unit + (Tree(a) * a * Tree(a))

type FringyTree(a,b) = b + (FringyTree(a,b) * a * FringyTree(a,b))





When using a parameterized type, you can put whatever type you want in
place of the parameters.  For example,

x : Maybe(N)
x = right(3)

t : FringyTree(Bool, Q)
t = right(left(True), 2/3, left(False))
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Set operations

The union or intersection of two finite sets can be found using
the union and intersect operators, or using the Unicode
notation ∪ and ∩.

Disco> {1,2,3} union {2,3,4}
{1, 2, 3, 4}
Disco> {1,2,3} intersect {2,3,4}
{2, 3}
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